Exam.Code: 0940 Sub. Code: 6716

2053

B.E. (Mechanical Engineering) Fourth Semester MEC-406: Numerical Analysis

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part. Use of simple calculator is allowed.

x-x-x

- 1. (a) Explain sum rule for the addition of approximate numbers. Find the sum of the numbers 143.3, 15.45, 0.1734. List any three sources of errors.
 - (b) State Newton's formula for finding the roots of the equations:

$$f(x,y) = 0, g(x,y) = 0.$$

- (c) Explain the concept of curve fitting. How it is different from interpolation. Write the normal equations to fit a quadratic $y = a + bx + cx^2$ to the data (x_i, y_i) , i = 1, 2, ---n.
- (d) Explain numerical differentiation. What is the fundamental concept employed in numerical differentiation? Why should numerical differentiation be avoided as for as possible?
- (e) State the explicit and implicit formulae for the solution of the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}$.

PART-A

- 2. (a) Discuss the truncation error in the Taylor series expansion. Find the number of terms of the Taylor series expansion of the function e^x required to compute the value of e correct to six decimal places.
 - (b) Derive Newton's iterative formula for computing the value of \sqrt{M} , where M is a positive real number. Hence compute $\sqrt{40}$.
- 3. (a) Solve the system with the aid of Gauss-Seidel iteration method:

$$0.23 \times + 1.78y - 8.23z = 15.7821; -1.20x - 5.03y + 2.91z = 9.63028;$$

 $5.13x - 1.70y + 2.83z = 11.3569.$

(b) Explain well-conditioned and ill-conditioned linear system. Examine whether the system 2x + y = 2; 2x + 1.01y = 2.01is well conditioned or ill-conditioned.

4. (a) Fit a curve of the form $y = a e^{bx}$ to the following data:

х	1	3	5	7	8
у	15	18	21	23	22

Estimate y for x = 6.

(b) Estimate the minimum weight of a bib taps when bore is 20mm using the following tabular information:

Bore (mm)	. 8	10	15	25	32	40	50	
Weight (kg)	0.25	0.30	0.40	1.25	1.70	2.15	3.65	

PART-B

- 5. (a) Use Trapezoidal formula to compute $\int_1^2 e^{-x^2} dx$ with n = 2, 4, 8. Then use the Romberg integration to improve the result.
 - (b) Find sec 31° from the following data:

θ°	31	32	33	34
tan θ	0.6008	0.6294	0.6494	0.6745

- 6. (a) Given $\frac{d^2y}{dx^2} y^3 = 0$, y(0) = 10; $\frac{dy}{dx}(0) = 5$. Evlauate y(0.1) using Runge-Kutta method.
 - (b) Solve the BVP: $\frac{d^2y}{dx^2} = x + y$ with the boundary conditions y(0) = y(1) = 0.
- 7. Solve by finite difference method: $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, u(0, t) = 0 = u(4, t) and u(x, 0) = x (4 x) choosing h = k = 1 and using Bender-Schmidt formula, find the values up to t = 5.