Exam.Code: 0940 Sub. Code: 6710

2053 B.E. (Mechanical Engineering) Fourth Semester MEC-404: Numerical Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each section. Use of simple calculator is allowed. All questions carry equal marks.

x-x-x

- 1. (a) Consider the number 52.43, which is correct to four significant figures. Find absolute error, relative error and percentage error.
- (b) State Newton's formula to find a root of f(x) = 0. Why this method is also known as method of tangents? Write down its merits and demerits.
- (c) What is the Lagrange's formula to find y, if (x_0, y_0) , (x_1, y_1) , (x_2, y_2) are given?
- (d) Write down the Euler's and modified Euler's method to solve: $\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$ Explain the difference between them.
- (e) Approximate $4x^3 + 2x^2$ using Chebyshev polynomial.

SECTION-A

- 2. (a) Find the number of term of the exponential series such that their sum gives sum of e^x correct to nine decimal places at x = 1.
 - (b) Find a root of the equation $x \cos x = 0$ by using the Bisection method correct to three decimal places. Find the number of iterations required to achieve this such accuracy.
- 3. (a) Find a positive root of the equation $3x \cos x 1 = 0$ by Newton method.
 - (b) Define forward, backward and shift operators. Derive the relation between them. Find the missing values in the following data using them:

x: 0 5 10 15 20 25 f(x): 6 10 - 17 - 31

4. (a) Using Newton's divided difference formula, evaluate f(8) and f(15) from the following data:

x: 4 5 7 10 11 13 f(x): 48 100 294 900 1210 2028

(b) Find the value of x if $\sqrt[3]{x} = 3.756$ given the following data:

x	50	52	54	56
f(x)	3.684	3.732	3.779	3.825

SECTION-B

5. (a) Solve the following equations by Gauss elimination method:

$$x + 4y - z = -5$$
; $x + y - 6z = -12$; $3x - y - z = 4$.

- (b) Find the smallest eigenvalue of the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ by using inverse power method.
- 6. (a) Compute $\int_0^1 \frac{x}{x^3+10} dx$ with 9 ordinates by Trapezoidal and Simpson's one-third rule.
 - (b) Given $\frac{dy}{dx} = 3x + y^2$, where y(1) = 1.2. Use Runge-Kutta method of second order to find approximate value of y(1.1) correct to three decimal places.
- 7. (a) Using the finite difference method, find f(0.25), f(0.5) and f(0.75) satisfying the differential equation: $\frac{d^2y}{dx^2+y}=x$ subject to y(0)=0, y(1)=2.
 - (b) Economize the series given by $\sinh x = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + ---$ on [-1,1], allowing for a tolerance of 0.0005.