2032
B.E. (Electrical and Electronic Enginecting),

Second Semester
EEEC-201: Basic Electrical Enginecring
Max. Marks: 50
Time allowed: 3 Hours
NOTE: Attempt five questions in all. including Question No 1 which is compulsory and selecting two questions from each Unit

1. Attempt the following:-
a) Define maximum power transfer theorem.
b) What information phaser diagram conveys?
c) What is the role of B / H curve in selecting of cone of transformer?
d) What is voltage regulation?
e) Draw a single line diagram having generator, transformer, bus bar and transmission line.

UNIT-1

II. a) State Thevenin's Theorem with the help of an example.
b) Obtain Thevenin and Norton equivalent circuits for the circuit as shown in Fig.1. All resistances are in Ohms

Fig, 1
III. a) Derive an expression for instantaneous value of alternating sinusoidal emf in terms of maximum value, angular frequency and time.
b) A Circuit has a resistance of 16μ, an inductance of 0.16 H and capacitance of $100 \mu \mathrm{~F}$ is series is connected across $220 \mathrm{~V}, 50 \mathrm{H} 2$ supply. Calculate impedance, Current and phase difference between current and supply voltage.

IV: a) Draw 3- φ voltage waveforms for a phase sequence RYB.
b) Determine line currents in an unbalanced Y connected load supplied from a symmetrical $3-\varphi, 440 \mathrm{v}, 3$-wire system. The branch impedances of the load are
$Z_{1}=(4+j 20) \mu$
$Z_{2}=(5-j 40) \mu$
$Z_{3}=(4+\mathrm{j} 30) \mu$
The sequence is RYB.

UNIT - II

V. a) Discuss working of transformer on capacitive load condition with the help of phaser diagram.
b) What is the condition of maximum η of T / F.

V1. a) What are the various transmission voltage level?
b) Discuss principles of working of 3- φ Induction motion.
VII. A magnetic circuit with uniform cross-sectional area of $6 \mathrm{~cm}^{2}$ consists of a steel ring with a mean magnetic length of 80 cm and air gap of 2 cm . the magnetizing winding has 540 AT . Estimate the magnetic flux produced in gap. The magnetizing curve of Cart steel can be drawn at there points.

$\mathrm{B}\left(\mathrm{wb} / \mathrm{m}^{2}\right)$	0.12	0.14	0.16	0.18
$\mathrm{H}(\mathrm{AT} / \mathrm{m})$	100	200	240	360

