2063

B.E. (Electrical and Electronics Engineering) Fifth Semester

PC-EE-503: Electromagnetic Fields Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of scientific calculator is allowed.

x-x-x

그는 이 마음을 하고 있다면 살아 있었다. 그런 아이들은 사람들은 사람들은 사람들이 되었다면 하는데	
I. (a) Express the value of differential volume dv in rectangular and cylindrical Co-ord systems.	linate (2)
(b) What are the differences between Poisson's and Laplace equations.	(2)
 (c) Determine electric flux density at distance of 20cm due to an infinite sheet of uniform charge 20μC/m² lying on z=0 plane. (d) Show that the displacement current through a parallel plate capacitor is equal to the conduction current I flowing in the external circuit. (e) State Poynting theorem. Give its significance. 	
Part- A	
II. (a) State and prove Stokes' theorem.	(5)
(b) Obtain expression for Laplacian operator in the cylindrical coordinates.	(5)
III. (a) Drive an expression for the electric field due to a straight and infinite Uniformly chawire of length 'L' meters and with a charge density of + c/m at a point P which lies a the perpendicular bisector of wire.	arged along (5)
(b) Apply Gauss's law to find the expression for Electric field Intensity and Electric density due an infinite line charge distribution.	flux (5)
IV (a) Obtain Poisson's and Laplace's equations for a homogeneous material.(b) State and explain the continuity equation for current.	(5) (5)
Part-B	
V. (a) Apply Biot-Savart law and determine an expression for magnetic field intensity at a podue to an infinitely long straight conductor carrying current I.	
(b) Find electric field due to charged ring on its axis.	(5) (5)
VI. (a) Derive the expression of inductance of solenoid having N turns.(b) Derive Electromagnetic wave equation for conducting and non-conducting medium.	(5) (5)
VII (a) Derive the Maxwell's equations in both integral and point form.	(5)
(b) A coaxial cable carries a dc voltage V and current I. Show that the power flow is VI v Poynting's theorem.	using (5)

	5910	
		ng bes slat? (a) A
Beginsal yibin enola zeki akti (d)		ve spayh() (s) III g-affo atw
	a decembo adi bali ot v ella esse an intere line charge dimekali	