2063 # B.E. (Electrical and Electronics Engineering) Fifth Semester ## PC-EE-503: Electromagnetic Fields Theory Time allowed: 3 Hours Max. Marks: 50 NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of scientific calculator is allowed. x-x-x | 그는 이 마음을 하고 있다면 살아 있었다. 그런 아이들은 사람들은 사람들은 사람들이 되었다면 하는데 | | |---|-----------------------| | I. (a) Express the value of differential volume dv in rectangular and cylindrical Co-ord systems. | linate
(2) | | (b) What are the differences between Poisson's and Laplace equations. | (2) | | (c) Determine electric flux density at distance of 20cm due to an infinite sheet of uniform charge 20μC/m² lying on z=0 plane. (d) Show that the displacement current through a parallel plate capacitor is equal to the conduction current I flowing in the external circuit. (e) State Poynting theorem. Give its significance. | | | Part- A | | | II. (a) State and prove Stokes' theorem. | (5) | | (b) Obtain expression for Laplacian operator in the cylindrical coordinates. | (5) | | III. (a) Drive an expression for the electric field due to a straight and infinite Uniformly chawire of length 'L' meters and with a charge density of + c/m at a point P which lies a the perpendicular bisector of wire. | arged
along
(5) | | (b) Apply Gauss's law to find the expression for Electric field Intensity and Electric
density due an infinite line charge distribution. | flux (5) | | IV (a) Obtain Poisson's and Laplace's equations for a homogeneous material.(b) State and explain the continuity equation for current. | (5)
(5) | | Part-B | | | V. (a) Apply Biot-Savart law and determine an expression for magnetic field intensity at a podue to an infinitely long straight conductor carrying current I. | | | (b) Find electric field due to charged ring on its axis. | (5)
(5) | | VI. (a) Derive the expression of inductance of solenoid having N turns.(b) Derive Electromagnetic wave equation for conducting and non-conducting medium. | (5)
(5) | | VII (a) Derive the Maxwell's equations in both integral and point form. | (5) | | (b) A coaxial cable carries a dc voltage V and current I. Show that the power flow is VI v Poynting's theorem. | using
(5) | | | 5910 | | |--|--|----------------------------------| ng bes slat? (a) A | | | | | | Beginsal yibin
enola zeki akti
(d) | | ve spayh() (s) III
g-affo atw | | | a decembo adi bali ot v ella esse
an intere line charge dimekali | | | | | |