Exam.Code:0935 Sub. Code: 6669

2063

B.E. (Electrical and Electronics Engineering) Fifth Semester

PC-EE-502: Control Engineering - IL

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

- 1. (a) Write state model equations and draw block diagram for them.
 - (b) Draw block diagram showing difference between feedforward and feedback control.
 - (c) What is the difference between a compensator and controller?
 - (d) Find z-transform of exponential function.
 - (e) What is the purpose of using ZOH in digital control systems?

(5*2)

PART-A

2. (a) Obtain phase variable state model for a system described by following differential equation:

$$\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} + 2y(t) = u(t)$$

Also, draw block diagram for it.

(b) A linear time invariant system is described by the following differential equations:

$$\frac{dx_1(t)}{dt} = -2x_1(t) + 4x_2(t) \qquad ; \quad \frac{dx_2(t)}{dt} = -2x_1(t) - x_2(t) + u(t)$$

Comment on controllability and stability of system.

(5, 5)

- 3. (a) What is the importance of tuning of PID controllers? Explain Zeigler Nichols method for this.
 - (b) For the following system, find the parameters of PD controller if maximum overshoot is 25% and settling time is 0.5 seconds.

(5, 5)

4. Explain how a LAG Compensator can be designed using any frequency domain approach. Clearly explain all the steps with one example.

(10)

PART-B

- 5. (a) Find z-transform of $e^{-at}\cos \omega t$.
 - (b) Derive formula for pulse transfer function of a digital control system if sampler is present in both error signal path and in feedback path.

(4, 6)

6. For the following system, determine characteristic equation in z-domain and find stability using bilinear transformation.

(10)

- 7. (a) Discuss operation and working of stepper motor and its control.
 - (b) Explain working and operation of digital position control system.

(5,5)