Exam.Code:0929 Sub. Code: 6597 ## 2063 ## **B.E.** (Electronics and Communication Engineering) Fifth Semester EC-505: Digital System Design Time allowed: 3 Hours 1 Max. Marks: 50 NOTE: Attempt <u>five</u> questions in all, including Question No. 1 (Section-A) which is compulsory and selecting two questions each from Section B-C. *x-x-x* Section - A | 1 | | | |---|---|-------------------| | 1 | a) Compare state diagram and state table. | • | | | b) What is machine equivalence? Give an example. | | | | c) Differentiate between ASM chart and a conventional flow chart | | | | d) What is hamming distance? Give an example. | | | | e) Differentiate combinational and sequential circuits. | 10 | | | Section-B (Attempt any two) | 10 | | 2 | a) Solve the following function using Oct. | | | 1 | Tomb Carr Method, Y | _ | | | $\Sigma_{m}(0,3,4,5,8,9,11,12,13,15)+d(1,2)$
b) Minimize and design the circuit using multiple | 5 | | | design the circuit using multiple output k-maps for | | | | $F1=\sum_{m}(2.5.6.7.8.10.12.13.14.15)$ $E2=\sum_{m}(5.9.0.10.14.12.12.12.13.14.15)$ | | | | | | | 3 | $F3=\sum_{m}(2,6,7,9,11,13,15)$ | 5 | | | a) Encode data bit 1101 into even parity hamming code. If received data is | is the | | | 1000101, then which bit encountered the error? | 5 | | | b) Find the test-set for fault detection and location using fault table method | | | | for the circuit shown in Fig.1 | | | | | | | | x1 10 | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | x2 0 | | | | $f = (\alpha 1 + \gamma 2) + (\alpha 2 + \gamma 2)$ | | | | V2 (62 + X3) | | | | | 5 | | | | | | | X3 0 1 | | | | Fig.1 | | | 4 | a) Minimize the function $f(x_1, x_2, x_3, x_4) = x_1x_2x_3 + x_1x_2x_3 + x_1x_2x_3 + x_1x_3x_4$ using | | | | the iterative consensus method and also verify using iterative consensus | | | | tabular method. | 5 | | | b) Find the Boolean difference of $F(X) = x_1 x_2 + x_3$ with respect to x_2 using at | 5 | | | least 4 methods. | _ | | | | 5 | | 5 | a) Design a synchronous sequential circuit with and its | | | | , and with and sequential circuit with one innuit line and with and | | | | output line that recognizes the input string x = 1111. The circuit is also | | | | required to recognize the overlapping sequences as can be seen in the | | | | output string 2 that results from the following input strings v - | | | | z = 0000001111000. | 5 | | - | b) Derive the minimal circuit for the sequential machine shown in fig. 2. | | | | 8 | | | | 있었습니다. [18] 마리스 19 (19) 19 (1 | Helekanting to As | | | x | | |-------|--|---------------| | - 218 | 0 1 | | | | A B/1 D/0 | # Description | | | B -/- B/O | | | | C E/0 D/- | 5 | | | D B/1 A/0 | | | | E C/1 | | | | F -/0 E/1 | | | | Fig.2 | | | 6 | a) Design a pulse mode circuit with input x_1 , x_2 , x_3 and output z. The output must change from 0 to 1 if and only if the input sequence x_1 - x_2 - x_3 occurs while $z = 0$. The output must change from 1 to 0 only after an x_2 input occurs. | | | | b) Given the following excitation table shown in fig.3. | 5 | | | x_1x_2 | | | | 00 01 11 10 | | | | | | | | 00 00 00 11 01 | | | | 01 11 (01) 10 (01) | | | | y_1y_2 1 00 00 10 10 | | | | 10 (1) 10 (1) 10 | | | | | | | | Y_1Y_2 | | | | Fig.3 Find all the race conditions in the table; are the races critical or noncritical? And do any cycles exist in the table? | 5 | | 7 | a) Derive the homing sequence for the sequential circuit defined by the state table in fig.4 | | | | A 1 | | | | 0 1 | 5 | | | A C/0 A/1 | 5 | | | B A/1 B/0 | | | | C D/0 B/1 | | | | D B/1 D/0 | | | | Fig.4 | | | | b) Draw an ASM chart and state table for a 2-bit up-down counter having mode control input M=1 for down and M=0 for up counting | 5 | | | L | |