Exam.Code:0915 Sub. Code: 6393

2063

B.E. (Computer Science and Engineering) **Third Semester CS-303: Discrete Structures**

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

- 1. Briefly explain the following with example: (a) Reflexive and Irreflexive relations (b) K-Regular graph (c) Monoid (d) Recurrence relation (e) Quantifiers (5x2=10)Section-A 2. (a) Consider the universal set $U=\{1,2,3,4,...,10\}$ and the subsets $A=\{1,7,8\}$, $B=\{1,6,9,10\}$, $C=\{1,9,10$. List the non-empty minsets and maxsets generated by A, B and C. Do the minsets and the maxsets form a partition of U? (b) Let R be a relation defined on the set of positive integers such that for all $x,y \in Z^+$,
 - (c) Is the Implication and its inverse logically equivalent? Justify your answer. **(2)**

xRy if and only if |x-y| < 7. Determine whether R is an equivalence relation.

- 3. (a) Show that the mapping f: $R \rightarrow R$ be defined by f(x) = ax + b, where a, b, $x \in R$, $a \ne a$ 0 is invertible. Find its inverse. (4)
 - (b) Prove that there is no largest integer that is a multiple of 5 using a suitable method of proof. (3)
 - (c) Show that $\forall x (P(x) \lor Q(x)) \Rightarrow \forall x P(x) \lor \exists x Q(x)$. (3)
- 4. (a) Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ whose all the elements are divisors of 100. Let the relation < be the relation | (divides) be a partial ordering on D_{100} .
 - I. Draw the Hasse diagram of the given poset.
 - II. Determine the glb of {10,20} and {5,10,20,25}
 - III. Determine the lub of (10,20) and {5,10,20,25} (5)
- (b) Show the implication $p \rightarrow q \Rightarrow p \rightarrow (p \land q)$ without using truth table. (3)
- (c) Let R be a binary relation on A such that (a, b) ∈ R, if book 'a' costs more and contains fewer pages than book 'b'. Is R an Equivalence Relation or a Partial Order Relation? Justify.

(4)

Section-B

5.	(a) Prove that total number of permutations of n different things taken not more to	han
	at a time, when each thing may be repeated any number of times is $n(n^r-1)/(n-1)$.	
	(b) Consider $a \in R$ as a constant real number. Assume $G = \{a^n : n \in Z\}$. Prove that G	
	abelian group under usual multiplication.	(5)
6.	(a) Solve the recurrence relation $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$.	(6)
	(b) Define order and size of a graph. Describe Complement and Subgraph of a g	
	giving examples.	(4)
7.	(a) Discuss the Breadth-First Traversal technique using a suitable example.	(6)
	(b) Define an algebraic structure. Differentiate between a ring and a field.	(4)