Exam.Code:1030 Sub. Code: 7549

2063

M.Tech. (Material Science and Technology) Second Semester

MT-204: Computational Tool and Techniques

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

Y-Y-Y

- 1. (a) How complex number is presented in python environment?
 - (b) Which command is used to calculate square root of integer "a" in python?
 - (c) Write a command to plot 2d graph, considering $y = \sin(x)$ as function in python?
 - (d) What is a LaTeX package? How can it enhance document formatting?
 - (e) Which are the different types of force fields used in molecular dynamics simulations?

 $(2 \times 5 = 10)$

PART A

- 2. Explain the components, terminology and working of the following operating systems:
 - (a) Windows and DOS operating system

(5)

(b) Linux operating system

(5)

- 3. (a) Explain forward, backward and central differentiations with its mathematical interpretation. Also discuss which one is a more accurate approach and why? (7)
 - (b) Internet in present times is a boon as well as has its own disadvantages. Discuss.

(3)

- Which mathematical method is used to evaluate area under curve? Write a python program for the given functions.
 - (a) Weighted Sum

$$A = \int_a^b f(x)dx \approx \frac{b-a}{n-1} \sum_{i=1}^n f(x_i)$$

(b) Trapezoidal method

$$A = \int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n-1} \frac{f(x_{i+1}) + f(x_{i})}{2} (x_{i+1} - x_{i})$$

PART B

- 5. (a) What is Monte Carlo simulation? Mention various steps used in the process of Monte Carlo estimating.(5)
 - (b) How Monte Carlo method can be used it to evaluate the value of $pi(\pi)$, by using area of square and circle, where circle lies in a square and having radius r = a/2, and 'a' is side of square. (5)
- (a) What is Fourier Transform? How can it be used to extract characteristic frequency from noise in computational environment? The provided function is,

$$\widetilde{y}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t)e^{i\omega t} dt$$

Take $\omega_1 = 2$, $\omega_2 = 0.3$ and $\omega_3 = 3.5$, $\gamma(t) = \frac{1}{2}\cos(\omega_1 t) + 2\sin(\omega_2 t) + \cos\sin(\omega_3 t)$ (b) What is Simpson Rule? Derive an expression for Simpson Rule.

(4)

- 7. (a) What do you mean by Molecular Dynamics simulations? Explain some of the properties of materials which can be investigated by using Molecular Dynamics? (7)
 - (b) Discuss any one approach to solve a system of linear equations.

(3)