Exam.Code:1033 Sub. Code: 7570

2063

M.E. (Bio-Technology) Second Semester MEBIO-203: Enzyme Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section. State clearly your assumptions.

Y-Y-Y

.1) Write briefly:

 $(1 \times 10 = 10)$

- a) According the Michaelis-Menten equation, what is the V/V_{max} ratio when [S] = 3 K_m?
- b) Define extracellular enzyme? Give two examples.
- c) List two advantages and disadvantages of immobilization.
- d) Name three starch hydrolyzing enzyme.
- e) What is the turnover number?
- f) Define effectiveness factor for immobilized enzyme?
- g) What is the Hanes -Woolf plot?
- h) Define enzyme activity and specific enzyme activity?
- i) What is the half life of enzyme?
- j) What are the functions of protease and lipase enzyme?

SECTION - A

- 2. a) Derive the rate of expression (V) for different type of enzyme inhibitions.
 - b) Explain effect of substrate and enzyme concentration on enzyme activity.
 - c) Find out Degree of inhibition (DOI) caused by uncompetitive inhibition when $[S] = \frac{1}{2} K_m$ and $[I] = K_I$
 - d) The equilibrium constant for the given reaction is 5 for given reaction scheme. Suppose we have a mixture of

$$E + S \leftrightarrow ES \leftrightarrow E + P$$

 $[S] = 2 \times 10^{-4} \text{ M} \text{ and } [P] = 3 \times 10^{-4} \text{ M}.$

What initial velocity will the reaction start towards equilibrium? If

$$K_m^S = 3 \times 10^{-5} \text{ M}, \qquad V_{max}^S = 2 \ \mu \text{ moles.lit}^{-1} \text{min.}^{-1}, V_{max}^P = 4 \ \mu \text{ moles.lit}^{-1} \text{min.}^{-1}. (3, 2, 2, 3)$$

3. a) Lipase is being investigated as an additive to laundry detergent for removal of stains from fabric. The general reaction is ---

Fats → Fatty acid + glycerol

The Michaelis constant for pancreatic lipase is 5 mM. At 60 °C, lipase is subjected to deactivation with half life of 8 min. Fat hydrolysis under specific condition which simulates a top-loading washing machine. The initial fat concentration is 45 mM and maximum reaction rate of hydrolysis is 0.07 mmol l⁻¹ s⁻¹. How long does it take for the enzyme to hydrolyse 80% of the fat present?

- b) If Enzyme follows the deactivation kinetics, Show that only V_{max} , not K_m affected.
- c) One microgram of a pure enzyme (MW=73000) catalyzed a reaction at a rate of 0.3 µmoles/min. under optimum conditions. Calculate the turnover number. (5, 3, 2)

- 4) A carboxypeptidase was found to have $K_m = 2 \mu M$ and $k_{cat} = 150 \text{ s}^{-1}$ for substrate A.
 - (a) What is the initial rate of reaction for [A] = 5 μ M and [E₀] = 0.01 μ M?
 - (b) The presence of 5 mM of a competitive inhibitor decreased the initial rate by a factor of 2. What is the value of K_1 ?
 - (c) A competing substrate B is added to part (a). It's $K_m = 10 \mu M$ and $k_{cat} = 100 \text{ s}^{-1}$. Calculate V_B/V_A .

SECTION - B

5. a) Enzymatic isomerization glucose to fructose can be expressed by reaction mechanism:

$$E + S \leftrightarrow ES \leftrightarrow E + P$$

The kinetic parameter is:

$$\frac{V_{m,s}}{K_{m,s}} = 0.128$$
 $\frac{V_{m,p}}{K_p} = 0.098$ $\frac{1}{K_{m,s}} = 0.383$ $\frac{1}{K_p} = 0.25$

If the feed (glucose) concentration is 1.0 kg mole/liter and desired conversion is 50%. Calculate the productivity in above rate expression in CSTR.

- Enzyme is immobilized in resin particles and packed into at 0.05 m³ Plug flow column. The total effectiveness factor for the system is close to unity; K_m for the immobilized enzyme is 1.32 kg m⁻³; V_{max} is 45 kg m⁻³ h⁻¹. The lactose concentration in the feed stream is 9.5 kg m⁻³; a substrate conversion is 98% is required. At what flow rate should the reactor be operated?
- 6. a) The isomerisation of 5 × 10⁻² mol·dm⁻¹ bulk concentration of glucose to fructose is conducted at 313°K in a batch reactor using immobilised glucose isomerase. The reaction exhibits reversible Michaelis-Menten kinetics and is characterised by K_m value of 2×10⁻³ mol·dm⁻¹. The determined effectiveness factor η of 0.7 reveals an appreciable contribution of mass transport to the measured reaction rate. Calculate the substrate concentration at the solid-liquid interface under these conditions.
 - b) Discuss external and internal mass transfer in immobilized enzyme. (5, 5)
- 7) Write a critical review on "Nano flower for efficient immobilized enzyme" (10)