2063 B.E. (Mechanical Engineering) Second Semester MEC-201: Rigid Body Dynamics

Time allowed: 3 Hours

Max. Marks: 50

(10)

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Q1a)Differentiate between inertial and non-inertial frame of reference.

b)Differentiate between conservative and non - conservative forces. Also give examples of conservative and non-conservative forces.

c)What is the work done on a rigid body subjected to couple moment M during

i)Translation ii)Rotation

d)What is torque - free motion.

e)Differentiate between damped and undamped vibrations.

Part-A

- Q2a)Derive the relation for acceleration of particle in polar co-ordinates. (5) b)A particle is projected just to clear two walls. The first one is at height of 'a' and is at a distance of 'b' from the point of projection. The second one is at height of 'b' and is at a distance of 'a' from the point of projection. Prove that angle of projection and range is given by: $\tan \alpha = (a^2 + ab + b^2) / ab$, $R = (a^2 + ab + b^2) / (a + b)$ (5)
- Q3a)Prove that escape velocity (Ve) of a satellite is equal to (2GM_e/r_o)^{1/2} where G is gravitational constant,M_e is the mass of earth and r_o is the initial distance of satellite from center of the earth. (5) b)Packages having mass of 12 kg are delivered from a conveyor to a smooth circular ramp with the velocity of V_o=2.8 m/s as shown in figure below. If the radius of the ramp is 4 m, determine the angle θ=θ_{max} at which the package begins to leave the surface using principle of work and energy. (5)

P.T.0

Sub. code: 62:22

(5)

Q4a)A ball of mass m collides with another identical ball at rest and has elastic collision.	Show that if the
collision is not head on, the two balls move at 90° after the collision.	(5)
b)Explain general plane motion with an example.	(3)
c)What is instantaneous centre. How it can be located	(2)

Part-B

Q5a) A uniform 50 kg crate rests on a horizontal surface for which the coefficient of kinetic friction is $\mu_{K} = 0.2$.Determine the acceleration if a force P = 600 N is applied to the crate as shown in figure below. (5)

b)The wheel is made from a 5-kg thin ring and two 2-kg slender rods as shown in figure below. If the torsional spring attached to the wheel's center has a stiffness k = 2 N. m /rad and the wheel is rotated until the torque M = 25 N.m is developed, determine the maximum angular velocity of the wheel if it is released from rest.

Q6a)Derive the relation for coefficient of restitution in an eccentric impact. b)What are forced vibrations. Write the differential equation of motion for viscous damped forced vibrations.	(5) 1
c)Explain the significance of critical damping.	(3) (2)
Q7a)Show that finite rotations cannot be classified as vectors. b)Write Euler's equations of motion for three dimensional kinetics of rigid body c)Explain briefly : A)Product of inertia B)Gyroscopic motion (2+2)	(3) (3)