2023

B.E. (Mechanical Engineering) Sixth Semester MEC-604: Heat Transfer

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part.

x-x-x

- 1. A What are the important consequences of Fourier's law?
 B What is the analogy between flow of heat and flow of electricity?
 C Define 'fin efficiency' and 'fin effectiveness'
 - D Differentiate between fundamental and derived dimensions?

 E Differentiate between heat transfer coefficient and thermal conductivity.
 - F What are applications of heat exchanger?
 - G What do you understand by net radiant heat flux?
 - H Show the temperature distributions of counter flow heat exchanger.
 - I What is a dropwise condensation?
 - J Why the radiation shape factor is important to study?

Part -A

- 2. A Consider a system of composite cylinders of inner radius r₁, outer 5 radius r₂ and thermal conductivity k₁ is covered with another layer (say, insulation) of radius r₃ and thermal conductivity k₂. There is no temperature drop at the interface. Let T₂ be the interface temperature. Further, let a hot fluid at a temperature T_a flow through the inner pipe with a heat transfer coefficient h_a. On the outside, let the heat be lost to a cold fluid at a temperature T_b flowing with a heat transfer coefficient of h_b. Let L be the length of the cylindrical system. Derive the relation for heat transfer for this composite cylinder.
 - B Obtain three-dimensional heat conduction equation in Cartesian 5 coordinates
- 3. A Determine the steady state heat transfer through a double pane 5 window, 0.8 m high, 1.5 m wide, consisting of two 4 mm thick glass layers (k = 0.78 W/(mC)), separated by a 10 mm thick stagnant layer of air (k = 0.026 W/(mC)). Inside temperature of room air is maintained at 20°C with a convective heat transfer coefficient of h_a = 10 W/(m² C). Outside air temperature is -10°C and the convective heat transfer coefficient on the outside is h_b = 40 W/(m² C). Also, determine the

overall heat transfer coefficient.

- B Derive the relation for critical thickness of insulation in case of 5 cylindrical rod.
- 4. A Determine the thermal conductivity of a long, solid 2.5 cm diameter 5 rod; one half of the rod was inserted to a furnace while the other half was projecting into air at 27°C. After steady state had been reached, the temperatures at two points 7.6 cm apart were measured and found to be 126°C and 91°C, respectively. The heat transfer coefficient over the surface of the rod exposed to air was estimated to be 22.7 W/(m² K). What is the thermal conductivity of the rod?
 - B Derive heat flow relationship when the fin is thin and long enough that 5 the heat loss from the tip is negligible.

Part-B

- 5. A Planck's law of monochromatic radiation. What is its significance?
 B Using the technique of dimensional analysis establish the following 6 relation for forced convection heat transfer. Nu = F (Re, Pr)
 6. A Derive an expression for the LMTD of a parallel-flow HX. State clearly 6 the assumptions
 B Discuss various regimes in pool boiling with a diagram.
 7. A A spherical liquid oversor tank 0.2
- 7. A A spherical liquid oxygen tank, 0.3 m in diameter is enclosed 5 concentrically in a spherical container of 0.4 m diameter and the space in between is evacuated. The tank surface is at -183°C and has an emissivity of 0.2. The container surface is at 25°C and has an emissivity of 0.25. Determine the net radiant heat transfer rate.
 - B It is observed that intensity of radiation is maximum in case of solar 5 radiation at a wavelength of 0.49 microns. Assuming the sun as a black body, estimate its surface temperature and emissive power. Wein displacement constant = 0.289 X 10⁻²mK.