Exam. Code: 0936 Sub. Code: 6642

2023

B.E. (Electrical and Electronics Engineering)

Sixth Semester EE-612: Signal and System

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Q.No.1 (i) What is dirac delta function?

- (ii) What do you mean by convolution sum and convolution integral?
- (iii) Write down Parseval's relation for continuous time periodic signal and proof it.
- (iv) Find Fourier transform of x(n) = 1.
- (v) What is Hilbert transform? Mention its properties.

(5x2=10)

Part-A

Q.No. 2 (a) For the system described by the following equations, with the input x(t) and output y(t), determine which of the systems are linear and which are non-linear:

(i)
$$dy(t)/dt + 3y(t) = x(t)$$
 (ii) $dy(t)/dt + 2y(t) = x^2(t)$ (iii) $dy(t)/dt + 3y(t) + 4 = x(t)$

(b) What do you mean by transformation of independent variable?

(6, 4)

Q.No.3 (a) Find the trigonometric Fourier series for the sawtooth wave shown below:

(b) Find the discrete time Fourier series for $x(n) = \cos(n\pi/4 + \varphi)$.

(5, 5)

- Q. No.4 (a) Find the Fourier transform for u(t).
- (b) Find the time domain signal if its Fourier transform is

$$H(j\omega) = \{1, 0 \le |\omega| \le \omega_o$$

0. otherwise

(c) Mention any four properties of continuous time Fourier transform.

(3, 4, 3)

P.T.O.

Part-B

Q.No.5 (a) Determine the Fourier coefficients for the periodic sequence $x(n) = \{0, 1, 2, 3\}$, with period N = 4.

(b) Find Hilbert transform of cosωot.

(6, 4)

Q.No.6 (a) Find the inverse Laplace transform of the following X(s):

(i)
$$X(s) = (2s+4)/(s^2+4s+3)$$
, $Re(s) > -1$

(ii)
$$X(s) = (2s+4)/(s^2+4s+3)$$
, $Re(s) < -3$

(iii)
$$X(s) = (2s+4)/(s^2+4s+3)$$
, $-3 < Re(s) < -1$

(b) Find the initial and final values of $X(s) = \frac{(2s+5)}{((s+1)(s+2))}$, ROC: Re(s) > -1. (6, 4)

Q.No.7 (a) Find the inverse Z-transform of $\frac{1-\frac{1}{2}z^{-1}}{1-\frac{1}{4}z^{-2}}$, $|z| > \frac{1}{2}$ using long division method.

(b) Find the Z-transform of $x(n) = -a^n u(-n-1)$ for |a| < 1, and |a| > 1. (5, 5)