

B.E. (Mechanical Engineering) **Fourth Semester**

MEC-406: Numerical Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section. Use of simple calculator is allowed. All questions carry equal marks.

- 1. (a) Explain the difference between accuracy and precision in numerical analysis with suitable examples. Explain an error and its different types.
 - (b) State intermediate value property of a continuous function? Explain the difference between bracketing methods and open methods with suitable examples.
 - (c) Explain the pitfalls of elimination method in solving linear algebraic system. Explain the techniques for improving the solution.
 - (d) Define numerical differentiation and integration. What is the difference between them?
 - (e) Explain the difference between IVP and BVP. Why do we need numerical methods for solving them? Explain Euler's methods for solving IVP.

SECTION-A

- 2. (a) Explain error in series approximation. Compute $log_e(1.02)$ truncating after the third term. Find the error.
 - (b) State the sufficient conditions for the convergence of fixed point iteration method. Find the value of $\sqrt{90}$ using fixed point iteration method correct to four decimal places.
- 3. (a) Prove that the LU decomposition method fails to solve the system of equations: x + y - z = 2; 2x + 2y + 5z = -3; 3x + 2y - 3z = 6. Justify, why it fails?
 - (b) Explain condition number. Find the same for the matrix: $A = \begin{bmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{bmatrix}$.
- 4. (a) Find the power fit $y = a x^m$ for the data:

X	1	2	3	4	5
у	0.5	2	4.5	8	12.5

(b) Explain interpolation and inverse interpolation along with applications. Find the value of x for f(x) = 10 using the following table:

X	2	3	4	5
f(x)	8	27	64	125

SECTION-B

- 5. (a) Evaluate $\int_0^2 \frac{dx}{x^2+4}$ using trapezoidal rule and Romberg's method.
 - (b) Let $f(x) = e^x$. Using a central difference formula of $O(h^2)$, find $f^{11}(1)$. Improve this value using Richardson's extrapolation by taking

$$h = 0.1$$
 and $h = 0.05$.

- 6. (a) Solve: $\frac{dy}{dx} = x + z$, y(0) = 0; $\frac{dz}{dx} = x y$, z(0) = 1 for x = 0.1 by Runge-Kutta method.
 - (b) Solve the BVP: $y^{11} = x + y$, y(0) = 1, y(1) = 1 by finite difference method.
- 7. Solve: $2 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, u(0,t) = 0, u(4,t) = 0, and u(x,0) = x (4-x), choosing h = k = 1 and using Bender-Schmidt formula, find the values up to t = 5.