Exam.Code: 0940 Sub. Code: 6711

2023

B.E. (Mechanical Engineering) Fourth Semester

MEC-401: Engineering Thermodynamics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part. Use of Steam and Gas tables is permitted.

x-x-x

Q-1)

- 1) Draw PV diagrams for Stirling and Ericsson cycles.
- 2) Relate entropy to social aspects with real life examples
- 3) What is Van't Hoff equation?
- 4) What is second law efficiency for a mixing chamber?
- 5) What is the significance of clearance volume in cylinders?

(5x2=10)

Q-2)

PART A

- 1) Explain with expressions the decrease of exergy principle.
- 2) A piston cylinder device contains 0.05kg of steam at 1MPa and 300°C. Steam now expands to a final state of 200 kPa and 150°C, doing work. Heat losses from the system to the surroundings are 2kJ during this process. Assuming surroundings to be at P₀= 100kPa and T₀=25°C, determine exergy destroyed and second law efficiency.

(3,7)

Q-3)

- A heat engine receives heat from a source at 1200K at a rate of 500kJ/s and rejects waste heat to a medium at 300K. Power output of the heat engine is 180kW. Determine reversible power and irreversibility rate for this process.
- 2) Explain construction, working and advantages of a Turbo prop engine.

(5,5)

Q-4)

1) A gas turbine operates on a pressure ratio of 6. Inlet air temperature to the compressor is 300K and air entering the turbine is at 577°C, if

Contd......P/2

volume rate entering the compressor is 240m³/sec then calculate Net Power Output of the cycle in MW and find its Efficiency, Inlet Pressure is 1 bar.

Derive and compare air standard efficiencies of Otto and Diesel cycles with PV and TS diagrams

(5,5)

Q-5) PART B

- 1) Derive the expression between equilibrium constant for ideal gas mixtures with standard state Gibbs function change.
- Give any five conclusions regarding equilibrium constant for ideal gas mixtures.

Q-6) (5,5)

- 1) How is phase equilibrium specified in a multicomponent system?
- Differentiae between Dalton's and Amagat's laws for predicting P-V-T behavior of a gas mixture.
- Q-7)
 Write short notes on any 2 of the following:-
 - 1) Relate mole, pressure and volume fractions in ideal gas mixtures.
 - 2) Flow work and non-flow work
 - 3) Clausius inequality

(5,5)