2023

B.E. (Electronics and Communication Engineering) Fourth Semester

EC-406: Analog Electronic Circuits

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Define Miller's Theorem.
 - b) What are the effects of cascading on voltage gain and Current gain of multistage amplifiers.
 - c) List the characteristics of an ideal operational amplifier.
 - d) What is the use of level translator?
 - e) Define Slew Rate.
 - f) Which type of feedback is applied to the oscillators?
 - g) What is CMRR?
 - h) List the characteristics of cascade amplifier.
 - i) What is Input offset and Input Bias current?
 - j) What do mean by a Schmitt trigger.

(10x1)

UNIT-I

- II. a) Design the dual input balanced output differential amplifier using the diode constant current bias to meet the following specifications:
 - i) Supply Voltage Vss =±12V
 - ii) Emitter current in each differential amplifier transistor =1.5 mA
 - iii) Voltage gain ≤ 60
 - b) Draw equivalent circuit and -voltage transfer curve of Op-amp. List three open loop op-amp configurations. Why open loop op-amp configurations are not used in linear applications? (2x5)

P.T.O.

- III. a) Derive an expression for output voltage, input resistance and output resistance of voltage-series feedback amplifier.
 - b) In an inverting amplifier, the feedback resistance R2 is 110 K Ω and input side resistance R1 is 2.2 K Ω . Estimate the gain for an ideal operational amplifier as well as for a practical operational amplifier with an open loop gain of 1000. (2x5)
- IV. a) Explain hybrid pi CE model of transistor at high frequency.
 - b) Perform ac analysis of Dual Input Balanced Output Differential Amplifier (2x5)

UNIT-II

- V. a) What is the difference between Clippers & Clampers?
 - b) What is Sample & hold Circuit? Why it is needed?
 - c) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 KHz. If a sine wave of 1V peak at 1000 Hz is applied to this differentiator, draw its output waveform.
- VI. a) What do you mean by slew rate? How does it affect the output voltage waveform?
 - b) Design a high pass filter at the cut off frequency of 2 KHz and pass band gain of 2.

 Plot frequency response of this filter. (2x5)
- VII. Write note on following:
 - a) Instrumentation Amplifier
 - b) Phase Shift Oscillator

(2x5)