Exam.Code: 1017 Sub. Code: 7471

2023

M.E. Electrical Engineering (Power System) First Semester EE-8101: Advanced Power System Analysis

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt any five questions. All questions carry equal marks.

x-x-x

	For the network of Figure 1, obtain the various incidence matrices and form the bus admittance matrix using singular transformation
	technique.
	1 70.2
	Figure 1
	j0.4
·	3
2	Discuss the need of load flow analysis. Explain the Newton Raphson method of Load Flow analysis using a flow chart.
3	Define short circuit capacity at a bus bar. Discuss the use of a suitable method for an unbalanced short circuit fault calculation with algorithm.
4	For the power system shown in Figure 2, obtain the fault calculations for a balanced short circuit (as shown by point F)
	G 11 kV/132 kV 132 kV/22 kV LOADS © 8 T ₁ 000000 8 T ₂ 25 MVA 30 MVA X = 0.092 pu 5 MVA X = 0.092 pu X = 0.02 pu
	Figure 2
5	Discuss the formulation of economic load dispatch problem without transmission losses and its solution by any one method. Also draw suitable flow chart.
6	Differentiate between economic load dispatch and optimal power flow problems. Give mathematical formulation of optimal power flow problem and its solution using Gradient method.
.7	Discuss the importance of state estimation in power system. Obtain the best estimate formula using method of least squares considering a three- bus example with DC load flow analysis.
.8	Explain sequential solution technique for a single-phase AC-DC load flow analysis.