Exam.Code:0999 Sub. Code: 7295

2023

M.E. (Computer Science and Engineering)

First Semester

CS-8109: Advance Computer Architecture (For UIET)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

- 1 Explain in brief
 - a) Blocking vs. Non-blocking networks.
 - b) Spatial vs. Temporal parallelism.
 - c) What is CPI and its formula?
 - d) Control flow vs. data flow.
 - e) Compare Amdahl's law and Gustafson's law with appropriate diagram

(02x05)

Section A

2 a) Consider the interleaved execution of the four programs as follows on each of the three machines. Each program is executed in a particular mode with the measured MIPS rating.

Programs	Execution Time (in seconds)		
	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20
Program 3	500	1000	50
Program 4	100	800	100

- Determine the arithmetic mean execution time per instruction for each machine executing the combined workload, assuming equal weights for the four programs.
- ii) Determine the harmonic mean MIPS rate of each machine.
- iii) Rank the machines based on the harmonic mean performance.
- b) What are semaphores and their applications in parallel computing? Compare Binary and Counting semaphores.

(06+04)

- 3 a) What are VLIW processors? Discuss the various problems associated with the VLIW processor and measures for their mitigation.
 - b) Explain the Snoopy Bus Protocol with labeled diagrams.

(05+05)

- 4 Explain the following terms associated with cache design:
 - a) Write-through vs. write-back caches.
 - b) Private caches vs. shared caches.
 - c) Cache flushing policies.
 - d) Cacheable vs. non-cacheable data.
 - e) Physical address cache vs. virtual address cache.

(02x05)

Section B

- 5 a) Draw and explain block diagram of Backplane Bus System. Also, describe bus arbitration and control.
 - b) Draw and explain the CM-2 architecture. Explain in detail that how the nodes are processed in CM-2?

(05+05)

- What are inclusion property and memory coherence requirements? Distinguish between write through and write back policies.
 - b) Write a short note on vectorization and parallelization methods to improve the performance of programs. Compare it with scalar optimization methods.

(04+06)

- Explain various cache coherence and synchronization mechanisms.
 - b) Analyze the data dependences among the following statements in a given program:

S1: Load R1, 1024

/R1 ← 1024/

S2: Load R2, M (10)

/R2 ← Memory (10)/

S3: Add R1, R2

 $/R1 \leftarrow (R1) + (R2)/$

S4: Store M (1024), R1

/Memory (1024) ←(R1)/

S5: Store M ((R2)), 1024

/Memory (64) ←1024/

Where (Ri) means the content of register Ri and Memory (10) contains 64 initially.

i) Draw a dependence graph to show all the dependences

ii) Are there any resource dependences if only one copy of each functional unit is available in the CPU?

(04+06)