2023

B.E., First Semester CH-101: Applied Chemistry (Common with ECE & EEE)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

- 1. (a) How polymers are classified on the basis of number of monomers present in a polymer?
 - (b) Why aniline absorbs at lower wavelength in acidic solution?
 - (c) Define the terms hot bands and fermi resonance in the context of Infrared Spectroscopy.
 - (d) Why tetrahedral complexes always form high spin complexes?
 - (e) What is galvanic corrosion?

 $2 \times 5 = 10$

2

3

5

PART-A

- 2. (a) Derive expressions for w, q, ΔE and ΔH when an ideal gas undergoes: i) isothermal reversible expansion ii) isothermal irreversible expansion.
 - (b) Define efficiency of an engine. Calculate the maximum efficiency of a steam engine operating between 110°C and 25°C.
 - (c) Define Hess's Law. What are its applications?

3. (a) Explain the mechanism of Monsanto process to synthesize acetic acid.

(b) Derive Michaelis-Menton's equation to study the rate of enzyme catalyzed reactions.

(a) What are fuel cells? Describe the construction and working of hydrogen-oxygen fuel
 5

(b) Explain the various methods to protect the metals from corrosion.

P.T.O.

5

4

PART - B

- (a). Calculate the number average and weight average molecular mass of a given sample of polyvinylchloride having 100 molecules molecular weight 100, 200 molecules of molecular weight 1000 and 300 molecules of molecular weight 10,000.
 - (b) Give the cationic mechanism for the polymerization of styrene.
- 6. (a) Trans-1-phenyl-1,3-butadiene has $\lambda_{max} = 280$ nm ($\epsilon = 27,000$). Calculate the concentration of a solution that has A = 0.643 at 280 nm in a 1 cm cell.
 - (b) Calculate λ_{max} for the following compounds:

- (c) How polar solvents affect the λ_{max} value for a) n- π^* b) π - π^* transitions? 3
- 7. (a) Calculate the crystal field stabilization energy in following complexes:

 (i) $[Co(CN)_6]^{3-}$ (ii) $[FeCl_4]^{2-}$ iii) $[Mn(H_2O)_6]^{2+}$ 6
 - (b) Explain crystal field splitting when the metal is placed in a square planar field.