Exam.Code:1014 Sub. Code: 7442

2123

M.E. (Mechanical Engineering) First Semester

MME-103: Advanced Mechanics of Materials

Max. Marks: 50

Time allowed: 3 Hours

NOTE: Attempt <u>five</u> questions in all, selecting atleast two questions from each part. Assume suitably the missing data, if any. Use usual notations and symbols for derivations. All questions carry equal marks.

x-x-x Part A

Q.1 Two prismatic bars of a by b rectangular cross section are glued together as shown in Figure 1. The allowable normal and shearing stresses for the glued joint are $700\,\mathrm{kPa}$ and $560\,\mathrm{kPa}$, respectively. Assuming that the strength of the joint controls the design, what is the largest axial load P that may be applied? Use $\phi = 40^\circ$, $a = 50\,\mathrm{mm}$, and $b = 75\,\mathrm{mm}$.

Figure 1

Q.2 The state of stress in a machine member is shown in Figure 2. The allowable compressive stress at the point is 14MPa. Determine (a) the tensile stress σ_x and (b) the maximum principal and maximum shearing stresses in the member. Sketch the result on properly oriented elements.

Figure 2

Q.3 Find the normal and shearing stresses on an oblique plane defined by $l=\sqrt{\frac{3}{13}},\,m=\sqrt{\frac{1}{13}},$

and $n = \sqrt{\frac{9}{13}}$. The principal stresses are $\sigma_1 = 35 \, \text{MPa}$, $\sigma_2 = -14 \, \text{MPa}$, and $\sigma_3 = -28 \, \text{MPa}$.

If this plane is on the boundary of a structural member, what should be the values of the surface forces p_x , p_y , and p_z on the plane?

 $Q.4~A~16\,\mathrm{mm} \times 16\,\mathrm{mm}$ square ABCD is sketched on a plate before loading. Subsequent to loading, the square becomes a rhombus illustrated in Figure 3. Determine (a) the modulus of elasticity, (b) Poisson's ratio, and (c) the shear modulus of elasticity.

Part B

Q.5 The strain readings from a 60° rosette at point A shown in Figure 4 are $\varepsilon_a = 900\mu$, $\varepsilon_b = 340\mu$, and $\varepsilon_c = -80\mu$. Find the magnitude and directions of the pricipal strains.

Figure 4

Q.6 Three bars of successively larger volume are to support the same load P (see Figure 5). Note that the first bar has a uniform cross-sectional area A over its entire length L. Neglecting stress concentrations, compare the strain energy stored in the three bars.

Figure 5

 ${f Q.7}$ A beam is supported and loaded as illustrated in Figure 6. Use Castigliano's second theorem to determine the reactions.

Figure 6

Q.8 Apply Castigliano's first theorem to compute the force P required to cause a vertical displacement $\Delta_v = 5 \, \text{mm}$ in the hinge-connected structure depicted in Figure 7. Let $\alpha = 45^{\circ}$,

 $L_0 = 3 \,\mathrm{m}$, and $E = 200 \,\mathrm{GPa}$. The area of each member is $6.25 \times 10^{-4} \,\mathrm{m}^2$.

X-X-X