Exam.Code:1014 Sub. Code: 7431

2123

M.E. (Mechanical Engineering) First Semester

MME-101: Advanced Engineering mathematics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, selecting atleast two questions from each Section. Use of Simple calculator is allowed. All questions carry equal marks.

x-x-x

SECTION-A

1. (a) Find the power series solution about x = 0, of the differential equation:

$$(1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+2y=0.$$

(b) Find two linearly independent series solutions of differential equation:

$$x \frac{d^2y}{dx^2} + 3 \frac{dy}{dx} - y = 0 \text{ about } x = 0.$$

- 2. Explain the Legendre differential equation and locate its singularity. Also, find its solution.
- 3. (a) Reduce the differential equation: $x \frac{d^2y}{dx^2} + a \frac{dy}{dx} + k^2 x^r y = 0$ to standard Bessel's differential equation. Hence, solve: $x \frac{d^2y}{dx^2} + 75 \frac{dy}{dx} + x y = 0$.
 - (b) Derive the generating function of the Bessel's polynomial.
- 4. (a) State and prove orthogonality of Legendre polynomials.
 - (b) Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem:

$$\frac{d^2y}{dx^2} + \lambda y = 0, \ y(0) = y(2\pi), \ \frac{dy}{dx}(0) = \frac{dy}{dx}(2\pi).$$

SECTION-B

- 5. (a) Approximate y and z by using the Runge-Kutta method for the particular solution of simultaneous differential equations: $\frac{dy}{dx} = x + yz$; $\frac{dz}{dx} = x z + y$, given that y = 1, z = -1 when x = 0.
 - (b) Solve: $\frac{d^2y}{dx^2} = x \frac{dy}{dx} y$; y(0) = 3, $\frac{dy}{dx}(0) = 0$ to approximate y(0.1) by the Picard's method.
- 6. (a) Solve the boundary value problem: $\frac{d^2y}{dx^2} 64y + 10 = 0$, y(0) = y(1) = 0 for x = 0.5, by the finite difference method.
- (b) Write a note on the finite difference method for solving partial differential eequations. Obtain the forward and backward finite difference approximations to u_{xx} .

- 7. Solve by relaxation method, the Laplace equation: $u_{xx} + u_{yy} = 0$ inside a square region bounded by the lines x = 0, x = 4, y = 0, y = 4 given that $u = x^2 y^2$.
- 8. (a) Use the Crank-Nicolson method to solve: $u_t = u_{xx}$ subject to the conditions: $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, u(0, t) = u(1, t) = 0.
 - (b) Solve the wave equation: $u_{t\,t}=u_{x\,x}$ up to t=0.2 with spacing 0.1 subject to the conditions: u(0,t)=0, u(1,t)=0, $u_t(x,0)=0$, u(x,0)=1=+x(1-x).

x-x-x