2123

B. E. (Information Technology) Seventh Semester PCIT-701: Digital Signal Processing

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Define the energy-type and power-type signals.
 - b) What is the significance of ROC of X(z)?
 - c) Find and plot the spectrum of (n-1).
 - d) Obtain the mapping formula for the impulse invariant transformation.
 - e) What are the applications of multi rate DSP?

(5x2)

UNIT - I

- a) State the differentiation, time shifting, time-reversal and convolution properties of the z-transform.
 - b) The z-transform of a signal is given by $X(z) = (2z^3 5z^2 + z + 3)/(z 2)(z 1)$. Find the signal x(n) if ROC is |z| < 1. (5,5)
- III. Compute the 8 point DFT of the sequence $x(n) = \{1,1,1,0,0,1,1,1\}$ using the radix-2 DIT Algorithm. Follow exactly the signal flow graph and calculate all intermediate values.

 (10)
- IV. Obtain the parallel and cascade realisation structures for the given signal.

$$y(n)=y(n-1)-1/2y(n-2)+x(n)-x(n-1)+x(n-2),$$
(10)

UNIT - II

- V. a) Explain the Bilinear Transformation method of digital IIR filter design?
 - b) Design a digital IIR filter using this method, if the analog filter is specified by $H_a(s) = (s + 0.1)/(s + 0.1)^2 + 9$, $\omega_r = \pi/4$. How is it better than Impulse Invariance?

(5,5)

P.T.O.

VI. The desired frequency response of a low pass filter is $Hd(e^{j\omega}) = e^{-j3\omega}, \text{ for } -3\pi/4 \le \omega \le 3\pi/4 \text{ and } 0, \text{ elsewhere}$ Determine $H(e^{j\omega})$ for M =7 using a rectangular, hamming window. (10)

VII. Describe the architecture and features of ADSP 21 XX family of processors with block diagram. (10)

x-x-x