Exam.Code:0941 Sub. Code: 6723

B. E. (Mechanical Engineering) Fifth Semester MEC-503: Robotics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) What is the Jacobian matrix in robotics, and how is it used in the context of robotic manipulators?
 - b) How do sensors contribute to the functionality of robots in various applications?
 - c) What is a tactile robot sensor?
 - d) How does a robotic arm differ from a human arm?
 - e) What is the role of actuators in a robotic system?

(5x2)

UNIT - I

- II. Explain in detail the convention used for affixing frames to links in robotics. (10)
- III. Consider a 3-DOF robotic manipulator with rotational joints. The lengths of the robot links are as follows: $l_1 = 0.2$ m, $l_2 = 0.3$ m and $l_3 = 0.1$ m. The joint angles are given as 30, 45 and -60 degrees respectively. Calculate the end-effector position using the Denavit-Hartenberg (DH) parameters and forward kinematics equations. Provide the transformation matrix from the base to the end-effector. Finally, obtain the end-effector coordinates in the base frame. (10)
- IV. How' does the Jacobian relate to the mapping between joint velocities and endeffector velocities in a robotic system? Additionally, discuss the role of the Jacobian in the context of robot manipulability and singularities. (10)

UNIT-II

- V. Consider a 2-DOF robotic manipulator, the robot needs to move from an initial configuration 30 and 60 degrees to a final configuration of 120 and 30 degrees over a period of 5 seconds. Implement linear interpolation to generate a trajectory for the robot to move smoothly from the initial to the final configuration. Calculate the joint angles, velocity and acceleration at each time step (e.g., every 1 second) using linear interpolation.
- VI. What are different robot actuators? Give a comprehensive description of each type using schematic diagrams. (10)
- VII. Discuss potential challenges or limitations of the linear control approach for the robotic system. (10)