Exam.Code:0977 Sub. Code: 7119

2123

M. Tech. (Micro-Electronics) Third Semester

MIC-301: Low Power Digital CMOS Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

1. Answer the following:-

a. Discuss two limits of hierarchy for low power design.

b. What is the source of power consumption in a CMOS SRAM?

- c. Derive the expression for the dynamic power dissipation in a CMOS inverter.
- d. Discuss three short channel effects in a MOSFET.
- e. Differentiate between average power and maximum power in a digital circuit. (5x2=10)

PART A

- 2 What is an advantage of saving power in digital circuits? What are the applications of low power systems?
 - Give a historical review of the developments in low power design.
 - What are the requirements for a MOSFET model at low power design? Give salient features of any model used for low power design. (2,3,5)
- 3 What are the methodologies to minimize the power dissipation and propagation delay in digital inverters? Compare these methodologies also. (10)
- What are the obstacles in minimizing power reduction in digital circuits? How power is estimated in digital circuits? (10)

PART B

- 5 What is the source of power dissipation in digital buses? How power can be reduced in them? Explain by taking a suitable technique. Hence compare the power dissipation in buses with a CMOS inverter. (10)
- 6 Explain the sources of power dissipation in 6T CMOS SRAM? How the power can be saved?
 - Compare the power dissipation in 6T SRAM and 1T DRAM. How the power can be saved in 1T DRAM. (5,5)
- 7 Explain how an address decoder, level shifter and a clock of a six transistor SRAM operate at low power? What are the low power design techniques for such circuits? (10)