Exam.Code:1007 Sub. Code: 7375

2123 M.E. (Information Technology)

Third Semester

MEIT-3105: Advanced Algorithm Analysis and Data Structure

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 (Section -A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

	Section-A	
1.	a) Solve the following recurrence relation using Master's theorem- T(n) = 2T(n/2) + nlogn	10
	b) Briefly explain the key principle behind Greedy Algorithms and mention one scenario where	
	a Greedy approach might not yield an optimal solution.	
	c) What is a Minimum Spanning Tree? Write brief steps of Kruskal's algorithm.	
	d) Define N-Queen problem. How do you solve the N-Queen problem?	
	e) Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an	
	initially empty binary search tree. The binary search tree uses the usual ordering on natural	
	numbers. What is the in-order traversal sequence of the resultant tree?	
	Section-B	
2.	Consider the following recursive algorithm for computing the factorial of a non-negative	
	integer:	
	def factorial(n):	
	if n == 0 or n == 1:	
	return 1	
	else:	
	return n * factorial(n - 1)	3
	i) Write down the recurrence relation for the time complexity of the factorial function.	
	ii) Suppose you have an algorithm with a worst-case time complexity of O(n^2), an average-	5
	case time complexity of O(n log n), and a best-case time complexity of O(n). Explain the	
	differences among these complexities and under what conditions each complexity is likely to	
	occur.	
	iii) Using Big-O notation, provide the upper bound for the time complexity of the factorial	2
	function.	
3.	a) Consider the Quick Sort algorithm. Discuss the basic idea behind Quick Sort and explain	5
	how it utilizes the Divide and Conquer strategy. Provide a recurrence relation for the time	
	complexity of Quick Sort when you divide the list in the ratio 1:10 at each step. Solve it to	
	express the overall time complexity.	
	b) Consider the Single Source Shortest Path problem. Explain how Dijkstra's algorithm, finds	5
	the shortest paths in a weighted graph. Discuss the conditions under which Dijkstra's	
	algorithm provides correct results and analyze its time complexity.	
4.	a) Define Multistage Graph. Write Algorithm for Multistage Graph.	4
	b) The Traveling Salesperson Problem is a classic optimization problem with applications in	
	various fields. Discuss the statement of the Traveling Salesperson Problem and explain how	6

5

Dynamic Programming can be applied to find an optimal solution. Analyze the time and space complexity of the Dynamic Programming approach for solving the Traveling Salesperson Problem.

Section-C

- 5. a) The Hamiltonian Circuit problem is a classic NP-complete problem. Describe the 5 Hamiltonian Circuit problem and explain how it can be approached using a backtracking algorithm. Discuss the conditions under which the backtracking algorithm is likely to be efficient or inefficient for solving the Hamiltonian Circuit problem.
 - b) What is the difference between recursion and backtracking? Can n queen problem be solved using backtracking? Justify your answer
- 6. a) Describe the search operation in a B-Tree. Explain how B-Trees maintain balance and why this is crucial for achieving efficient search operations.
 - b) Walk through the process of inserting a new node into a Red-Black Tree. Explain the necessary rotations and color adjustments that may be performed to maintain the Red-Black Tree properties. Illustrate your answer with a simple example.
- 7. a) Define pattern matching and explain its significance in computer science. Briefly describe 5 the basic idea behind brute-force pattern matching and discuss one limitation of this approach.
 - b) Explain the concepts of NP-hard and NP-complete classes in the context of computational complexity. Provide definitions for both terms and discuss the relationship between them. Provide an example of an NP-complete problem.