Exam.Code:1034 Sub. Code: 7579

2123

M. E. (Bio-Technology) Third Semester

ME-BIO-302 (a): Biological Waste Water Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section. State clearly your assumptions.

x-x-x

1) Write briefly:

 $(2 \times 5 = 10)$

- a) Chemical and biological pollution.
- b) Waste to energy.
- c) Bioremediation.
- d) Biosorption.
- e) Oxidation Ponds.

SECTION - A

- 2 a) The ultimate BOD of a wastewater sample is estimated as 87% of COD. The COD of this waste water is 300mg/L. Considering first order BOD reaction are constant (k= 0.23) per day and temperature coefficient θ=1.047, Calculate BOD value after three days of incubation at 27°C for this wastewater.
 - b) Define BOD, Ultimate BOD and COD. Write a kinetics and significance for the estimation of BOD Test. (5, 5)
- 3.a) Explain the following:
 - i) Waste water characteristics.
 - ii) Purpose of sedimentation in sewage treatment.
 - iii) Methods of waste water treatment.

 $(2 \times 3 = 6)$

- b) An industrial waste with an inlet BOD₅ of 800 mg/L must be treated to reduce the exit BOD₅. The inlet flow rate is 400 m³/hr. the kinetic parameter have been estimated for waste as μ_m =0.20 hr¹, K_s = 50 mg/L of BOD, $Y_{X/S}$ =0.5 g of cell/g of BOD and K_d = 0.005 hr¹. A waste treatment unit of 3200 m³ is available. If you operate at a value of Θ_c = 120 hr. If the BOD removal is attained in well-mixed activated sludge process.
 - Find:
- i) Substrate concentration (S) in reactor.
- ii) Cell mass concentration (X).
- iii) Food to microorganism ratio (F/M).
- iv) Utilization rate (U).

(4)

4.a) Design a trickling filter to treat waste water released from fruit-processing unit. The following data are given:

Flow rate of waste water = $35,000 \text{ m}^3/\text{d}$

Influent BOD = 550 nig/L

Effluent BOD = 25 mg/L

Temperature Data:

a) summer = 30°C

b) Winter = 15°C

The following data have been experimentally determined:

BOD removal rate constant at 25° C = 0.1 d⁻¹

Temperature correction coefficient = 1.08

-Specific area of conventional filter packing material = 100 m³/ m²

Filter height = 12 m

Any other data may be assumed if required, give reasons.

Contd.....P/2

b) Discuss activated sludge process and trickling filter with neat and clean diagram and explain merit and demerit of ASP and TF.

(4, 6)

SECTION - B

- 5) Describe the merits and demerits about anaerobic waste water treatment and discuss the mechanism of anaerobic treatment processes. Explain anaerobic digester with neat and clean diagram.
 (10)
- 6.a) Explain biogas production and discuss the factors affecting on biogas production.
 - b) Explain In situ and Ex situ bioremediation with suitable examples.

(4)

- 7) Write a notes on:
 - a) UASB.
 - b) Biosorption of heavy metals.
 - c) Bio augmentation.
 - d) Bio-filtration.

 $(2\frac{1}{2} \times 4 = 10)$

x-xx-