Exam. Code: 0933 Sub. Code: 6656

2123

B.E. (Electrical and Electronics Engineering) Third Semester

ES-EE-301: Network Analysis and Synthesis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Show that under the condition of maximum power transfer, the efficiency of a circuit is 50%.
 - b) Enlist the properties of an incidence matrix and cut-set matrix.
 - c) What are transmission parameters? Where are they most effectively used?
 - d) How the stability of a network depends on the position of poles in the s-plane?
 - e) State the conditions for a polynomial to be Hurwitz. (5x2)

UNIT - I

II. Determine the current through (4-j8) Ω branch in the circuit shown using Thevenin's theorem and Norton's theorem.

(10)

III. For the circuit shown, draw the oriented graph. Also draw its tree and co-tree. Write the fundamental cut-set matrix.

(10)

IV. a) Find the transmission parameters for the network shown:-

b) Obtain the reciprocity and symmetry conditions for Z and Y parameters. (2x5)

UNIT - II

V. a) In the R-C series circuit, the capacitor has an initial charge of 2.5mC. At t = 0, the switch is closed and a constant voltage source of V = 100V is applied. Use Laplace transform method to find the current i(t) in the circuit.

- b) What do you understand by initial conditions before and after switching? Discuss the advantages of the Laplace transform method over conventional method of solving linear equation? (10)
- VI. What do you mean by driving point impedance function? Express the impedance Z(s) for the network shown. Plot its pole-zero plot and infer about stability of the system.

(10)

- VII. a) Realize the function $Z(s) = \frac{(s+1)(s+3)}{(s+2)(s+4)}$ in Cauer II form.
 - b) Determine whether the function given as $F(s) = \frac{2s^2 + 2s + 1}{s^3 + 2s^2 + s + 2}$ is a positive real function. (2x5)