Exam.Code:0905 Sub. Code: 6204 $(5 \times 2 = 10)$ ## 2123 B.E., First Semester ASP-X02: Quantum Physics (CSE, IT) Time allowed: 3 Hours Max. Marks: 50 **NOTE**: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Y-Y-Y 1. Attempt the following questions. | (a) What was the objective of Michelson Morley Experiment? How | is the result of the experiment interpreted? | | |--|---|------| | (b) What are the salient features of Blackbody radiation spectrum? | | | | (c) Find the value of the commutator [x, p _x]. | | | | (d) What do you mean by degenerate energy states? | | | | (e) What are the drawbacks of classical free electron theory? | | | | | | | | Part-A | | | | 2. (a) Derive the relativistic expression for kinetic energy of a body and | I show that for smaller speeds, it reduces to class | sica | | expression. | . (4) |) | | (b) Using Lorentz transformation equations, derive the relativistic velo | ocity transformation equations. (4) |) | | (c) An electron and a photon both have momenta of 2 MeV/c. Find the | e total energy of each. (2) |) | | 3. (a) What is Compton Effect? Derive expressions for Compton shi electrons. | | | | | (5) |) | | (b) What do you mean by phase velocity (v _p) and group velocity (particle moving with a velocity v | v _g) of a wave? Show that for a wave packet with | th | | $v_p \times v_g = c^2$ | (3) |) | | (c) Using uncertainity principle, estimate the radius of 1st Bohr's orbit. | (2) |) | | 4. (a) Establish the operator form of steady state Schrodinger wave equat | ion. (4) |) | | (b) How does the production of X-rays support the particle nature of e | electromagnetic radiation? Explain. (3) | | | (c) For a particle constrained to move along x axis between x=0 and x | =L, having represented by a wave function | | | $\psi = Ae^{ikx}$, find the values of normalization constant and $\langle x^2 \rangle$. | (3) | 1 | | Part-B | · | | | 5. (a) Find out the transmission probability for an electron, with energy | E, incident on a potential barrier V ₀ , when energy | vo | | electron $E < V_0$. A 1 eV electron gets trapped inside a metal. If the | potential barrier is 4.0 eV and the width of the bar | rrie | | is 2 Å, calculate the probability of its transmission | (6) | | | (b) Show that the energy of a particle trapped in an infinitely rigid | box is quantized. (4) | | | 6. (a) Write down the Schrodinger equation for the harmonic oscillator a mechanical oscillator with that of a classical oscillator. Also accordance with correspondence principle. (b) A beam of particles, each with energy 40 MeV approaches a stableam is reflected and transmitted? | show how this harmonic oscillator problem is | s i | | 7. (a) Explain the formation of energy bands in solids using Kronig Per in the Kronig Penney model in the limit of very high and very low (b) Discuss the variation of Fermi Dirac distribution function with the silver is 5.48 eV. Calculate the number of such electrons per cubic | v potential barriers. (5)
emperature. Fermi energy of conduction electrons | s i |