Exam.Code: 0905 Sub. Code: 6191

2123

B.E., First Semester ASP-X01: Applied Physics (Common with CSE, Bio-Tech, IT, ECE, Civil, EEF)

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Question I. Attempt any five parts of the following:

(2marks each)

- (a) What is the physical significance of bandwidth of forced oscillator.
- (b) Why are the interfacial angles altered in the construction of Nicol prism.
- (c) Show that the average poynting vector associated with propagating electromagnetic wave is the sum of its electric and magnetic energy densities.
- (d) How does graded index fiber aid in reducing modal dispersion.
- (e) Give a distinctive feature between vector and phasor.
- (f) Show that three level lasers always have spiking output.

SECTION A

Question II

- (a) Show that x=(A+Bt)e^{-pt} is the solution of critically damped oscillations. (3)
- (b) State and prove Poynting vector theorem. Interpret each of the term in its result. (4)
- (c) Show that the work done per second against the resistive or damping force is equal to the power supplied to the oscillator by the driving agency. (3)

Question III

- (a) Discuss the propagation of EM waves in a conducting medium and discuss its important features.
- (b) Show that in a conductor the magnitude of electric vector reduces to about 1% at a distance of $0.73\lambda_c$, where λ_c is the wavelength of EM waves in the conductor. (2)
- (c) A uniform rod of length L is nailed to a post such that two thirds of its length is below the nail. What is the time period of oscillations of the rod. (4)

P.T.O.

(3)

Que	estion IV Consider that an EM wave is incident at angle to the interface of two media	a. Using
(a)	Consider that an EM wave is incluent at angle to the	(4)
	electromagnetic wave theory, prove the Snell's law of refraction.	
(b)	If ω is the angular frequency of the damped harmonic oscillator and ω_o is the	5.1
	frequency and ω^2 - ω_0^2 = 10 ⁻⁶ ω_0^2 , then find the Q-value and logarithmic decrement	nt of the
	oscillator.	(3)
(c)	integral of a vector field $\vec{v} = 2xz\hat{i} + (x+2)\hat{i} + v(z^2-3)\hat{k}$	over tive
` '	surfaces of a cube of side=2 and having one of it vertices at origin of coordinate	system.
	Exclude the surface of cube lying in the xy plane of the coordinate system.	(3)
	SECTION B	
Ou	estion V	
(2)	Discuss the construction and working of Nicol prism. Why are interfacial angles	of calcite
(a)	crystai reduced.	.(4)
(1-1	the four level leger is exciss to generate and sustain.	(3)
(b)	The application of ontical fiber as temperature sensor.	(3)
(c)		
Qu	uestion VI	(4)
(a)	Give the construction and working of ruby laser. What are its drawbacks.	(3)
(b)	Discuss the phenomenon of optical activity using wave theory of polarization.	
(c)	Discuss various kinds of attenuations suffered by the light signal propagating the	(3)
	optical fiber.	(5)
Qı	uestion VII	, (0)
a)		(3)
b	Discuss sequentially the processes involved in the lasing action.	(4)
		1.37

c) Discuss the working of an LCD display.