(i) Printed Pages: 4
(ii) Questions :7

Roll No.

\section*{Sub. Code : | 6 | 1 | 9 | 3 |
| :--- | :--- | :--- | :--- | \\ | 0 | 9 | 0 | 5 |
| :--- | :--- | :--- | :--- |}

B.Engg. $1^{\text {st }}$ Year ($1^{\text {st }}$ Semester)
(2123)

CALCULUS

(Common to All Streams)

Pape : ASM-101

Time Allowed : Three Hours]
[Maximum Marks : 50
Note :-Attempt FIVE questions in all, including Question No. 1 which is compulsory and selecting TWO questions from each Section.

SECTION—A

1. Answer the following :
(a) Find limit of the sequence $a_{n}=n-\sqrt{n^{2}-n}$.
(b) If $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta$ then find $\left(\frac{\partial x}{\partial r}\right)_{\theta}$ and $\left(\frac{\partial r}{\partial x}\right)_{y}$.
(c) Find the arc length for the curve $\frac{\mathrm{x}^{3}}{12}+\frac{1}{\mathrm{x}}, 1 \leq \mathrm{x} \leq 4$, taking point $\left(1, \frac{13}{12}\right)$ as the starting point.
$\widetilde{\mathrm{r}}(\mathrm{t})=(\mathrm{a} \cos \mathrm{t}) \hat{\mathrm{j}}+(\mathrm{a} \sin \mathrm{t}) \hat{\mathrm{k}}, 0 \leq \mathrm{t} \leq 2 \pi$.
(e) Change the Cartesian integral in polar integral and evaluate :

$$
\int_{0}^{x} \int_{0}^{2} y d y d x .
$$

SECTION-B

2. (a) Which tests is better, Ratio Test or Root Test? Justify your answer by providing suitable example.
(b) Find the interval and radius of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{2 n+1}}{2 n+1}$ and also find the values of x for which series converges absolutely and conditionally.
(c) For what values of p the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}$ converges ?

$$
3+4+3
$$

3. (a) Find the areas of the surface generated by revolving the curve $x=2 \sqrt{4-y} ; 0 \leq y \leq \frac{15}{4}$ about the y-axis.
(b) Given a function $f(x, y, z)=\frac{x+y+z}{x^{2}+y^{2}+z^{2}+1}$, and a positive number $\epsilon=0.015$. Show that there exists a $\delta>0$ such that for all (x, y, z),

$$
\sqrt{x^{2}+y^{2}+z^{2}}<\delta \Rightarrow|f(x, y, z)-f(0,0,0)|<\epsilon .
$$

(c) Let $x=r \cos \theta, y=r \sin \theta$ in a differentiable function $w=f(x, y)$. Show that :

$$
\left(\mathrm{f}_{\mathrm{x}}\right)^{2}+\left(\mathrm{f}_{\mathrm{y}}\right)^{2}=\left(\frac{\partial \mathrm{w}}{\partial \mathrm{r}}\right)^{2}+\frac{1}{\mathrm{r}^{2}}\left(\frac{\partial \mathrm{w}}{\partial \theta}\right)^{2} \quad 3+3+4
$$

4. (a) Maximize the quantity $f(x, y, z)=\frac{5 x y z}{x+2 y+4 z}$ subject to constraint $x y z=8$.
(b) A delivery company accepts only rectangular boxes, the sum of whose length and girth (perimeter of a crosssection) does not exceed 108 cm . Find the dimensions of an acceptable box of largest volume.
(c) A company manufactures stainless steel right circular cylindrical molasses storage tanks that are 25 ft high with a radius of 5 ft . How sensitive are the tanks' volumes to small variations (change) in height and radius ?
$4+3+3$

SECTION-C

5. (a) Reverse the order of integration, and evaluate the integral

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y
$$

(b) Find the volume of the first octant bounded by the co-ordinate planes, the plane $x+y=4$ and the cylinder $y^{2}+4 z^{2}=16$
(c) Use the transformation $u=x-y$ and $v=2 x+y$ for x^{*} and y to evaluate the integral

$$
\iint_{R}\left(2 x^{2}-x y-y^{2}\right) d x d y
$$

for the region R in the first quadrant by the lines $y=-2 x+4, y=-2 x+7, y=x-2$, and $y=x+1$. $3+3+4$
6. (a) Find the length of the curve

$$
\vec{r}(t)=(\sqrt{2} t) \hat{i}+(\sqrt{2} t) \hat{j}+\left(1-t^{2}\right) \hat{k}
$$

from $(0,0,1)$ to $(\sqrt{2}, \sqrt{2}, 0)$.
(b) Find the tangential and normal component of the acceleration ($\vec{a}=a_{T} T+a_{N} N$) for the space curve $\bar{r}(t)=(a \cos t) \hat{i}+(a \sin t) \hat{j}+b t \hat{k}, \quad a, b \geq 0, a^{2}+b^{2} \neq 0$
(c) Find the directional derivative of $f(x, y, z)=x y z$ in the direction of the velocity vector of the helix

$$
\overrightarrow{\mathrm{r}}(\mathrm{t})=(\cos 3 \mathrm{t}) \hat{\mathrm{i}}+(\sin 3 \mathrm{t}) \hat{\mathrm{j}}+3 \mathrm{t} \hat{\mathrm{k}}
$$

at $t=\frac{\pi}{3}$.
7. (a) Show that the vector field

$$
\int_{C} \vec{F}=\left(e^{x} \cos y+y z\right) \hat{i}+\left(x z-e^{x} \sin y\right) \hat{j}+(x y+z) \hat{k}
$$

is conservative over its natural domain and find a potential function for it.
(b) State and verify Stoke's theorem for the hemisphere $S: x^{2}+y^{2}+z^{2}=9, z \geq 0$, its bounding circle $C: x^{2}+y^{2}=9, z=0$, and the vector field $\widetilde{F}=y \hat{i}-x \hat{j}$.

