Exam.Code:0938 Sub. Code: 6999

2062

B.E. (Electrical and Electronics Engineering) Eighth Semester Elective – II

EE-808: Electrical Machine Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Missing data (if any) can be appropriately assumed.

x-x-x

. 1.	Explain in brief.	
A)	Write the equation representing the Newton's law of cooling and state the operating conditions under	
	which the law is strictly applicable.	(02)
B)	What are the factors to determine the rotor slots in induction motor?	
C)	Why riser is provided on the commutator?	(02)
. D)	Why the length of single states and the commutator?	(02)
	Why the length of air gap in induction motor is kept minimum possible whereas in a d.c. machine it is larger?	(02)
E)	State merits of computer aided design of an electrical machine.	(02)
		(02)
	Part A	
[2. A)	disadvantages of using higher specific loading?	(05)
B)	A 5 KW, 250V, 4 pole 1500rpm shunt generator is designed to have a square pole face. The	(05)
	loadings are: average flux density B _{av} =0.42Wb/m ² and ampere conductors per metre ac=15000A/m.	(05)
	Find the main dimensions of the machine. Assume full load efficiency = 0.87 and ratio of pole arc to	
	pole picth=0.66	
3. A)	When a motor runs at its continuous rating, its final temperature rise is 75°C. It has heat time	(O.T.)
	constant of 0.75 hours.	(05)
	(i) Calculate the temperature rise after 1 hour of the start of the motor and running continuously on	
	the load.	
	(ii) Calculate the maximum steady temperature if the temperature rise in one hour rating is 75°C.	
	(iii) How much time the motor will take to a temperature rise in one nour rating is 75°C.	
	(iii) How much time the motor will take to a temperature rise from 50°C to 75°C if it is working at its one hour rating?	
B)		
٠,	Explain briefly various types of cooling systems used for rotating electrical machines.	(05)
(4.A)	Calculate approximate and II I'	
7.11	The state dimensions for a 200 KVA, 0000/440 V. 30 HZ 1 -0 core type	(07)
	transformer. The following data may be assumed: flux density $B_m=1.3$ Wb/m ² , Current density $\delta=2.5$	
	A/mm ² , window space factor $K_w=0.3$, Overall height is equal to Overall width, Iron factor $K_i=0.9$,	
	EMP/turn=10V, Use 3 stepped core. For a 3 stepped core: $W_d = 0.9d$: A = 0.6 d^2 Verify overall	
341	neight is same as that of overall width of the transformer.	
B)	and a designed to have maximum emiclency at loads duffe lower than the	(03)
	full loads?	()
	Part B	
[5. A)	. Same and an induction motor.	(05)
B)	and the state of state store and number of state conductors per slot for a	(05)
	140 H.P., 3300 volt, 50 c/sec., 12 poles, star-connected slipring induction motor. Assume	(03)
	Average gap density = 0.4 Wb/m ²	
	Ampere-conductor per metre = 25,000	
	Efficiency, $\eta = 90\%$	
	Power factor $= 0.9$	
	Winding factor = 0.96	
	UPSERING 프로마트 (COTTO TOTAL CONTROLLE) (UPSERING SERVERING CONTROLLE) (UPSERING CONTROLLE) (UPSERING CONTROLLE)	

- (6. A) Derive the output equation of a synchronous machine in terms of its main dimensions and specific (05) loadings.
 - B) Estimate suitable air gap diameter and length of a 10 MVA, 11 kV, 8-pole 3-phase, 50 Hz star-connected synchronous generator. Maximum air-gap flux density is 0.92 tesla. The ampere per conductor per metre length of periphery is varying from 20,000 to 40,000 A/m. The peripheral velocity should not be more than 80 m/sec. Suggest the type of pole to be constructed. Pole arc to pole pitch ratio is 0.66.
 - 77. Write a short notes on

(10)

- A) Draw the flow chart for overall design of three phase Induction motor.
- B) Why the field structure is usually made a rotating part in a 3-phase synchronous alternator?

x-x-x