Exam.Code:0942 Sub. Code: 7060

20**6**2 B.E. (Mechanical Engineering) Sixth Semester

MEC-603: Mechanical Vibrations

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory

and selecting two questions from each Section.

x-x-x

1	(a) Wise all and Call 1909	
ŗ	(a) Write the name of the different parts of a vibrating system.	10
	(b) Define vibration isolation.	
	(c) What is longitudinal vibration?	
	(d) What do you mean by Co-ordinate coupling?	8:=
	(e) What is the difference between discrete system and continuous system?	
	Section A	
2	(a) Show that two simple harmonic motions with frequency p and 2p when added will result in a	F .
	periodic function of frequency p. Generalize the above for a number of harmonic functions with frequencies p,2pnp etc.	: 5.
	(b) A steel wire with E=1.96×10 ¹¹ N/m ² is of 2mm diameter and is 30mm long. It is fixed at the upper	
	end and carries a mass M kg at its lower end. Find M so that frequency of longitudinal vibration is 4 cycle/sec.	5
	(a) A shock absorber is to be designed so that its overshoot is 10% of the initial displacement when released. Determine the damping factor. If the damping factor is reduced to one half this value, what will be the overshoot?	5
	(b) A mass of 1 kg is to be supported on a spring having a stiffness of 9800 N/m. The damping	5
	coefficient is 4.9 N-sec/m. Determine the natural frequency of the system. Find also the logarithmic decrement and the amplitude after three cycles if the initial displacement is 0.30 cm.	
	(a) A ratio set of 20 kg mass must be included for	
	(a) A ratio set of 20 kg mass must be isolated from a machine vibration with an amplitude of 0.05 mm at 500 rpm. The set is mounting on four isolators, each having a spring scale of 31400N/m and damping factor of 392 N-sec/m. (i) What is the amplitude of vibration of the radio?	6
	(ii) What is the dynamic load on each isolator due to vibration?	
	(b) Draw a neat sketch of dry friction damper and explain its working.	4
	C D.	
	Section B	
	(a) Explain semi-definite system. Derive the equation of motion and also find the natural frequency of the system.	5
		1
	(b) Calculate the natural frequency of a shaft of diameter 10 cm and length 300 cm carrying two discs	5
	of diameters 125 cm and 200 cm respectively at its ends and weighing 480 N and 900 N respectively. Modulus of rigidity of the shaft may be taken as $1.96 \times 10^{11} \text{ N/m}^2$.	
	[20] 그 [20] 그 그 그 그 그 그 그는 그는 그는 그는 그는 그는 그는 그는 그는	1

method.		em shown in Fig.1 by matrix iter	
		≱ 3k	-
		\$ 2K	∀X i
*		3m	7 X2
			7 X₃
	artial differential equation of the	Fig.1	