29/1/2015

Exam.Code:0924 Sub. Code: 6853

2062
B.E. (Information Technology)
Sixth Semester
IT-603: Theory of Computation

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

1. Attempt the following:-

a) Differentiate between top-down and bottom-up parsing?-

- b) What is the minimum number of states in finite automata to process a string of length n? Justify your answer with example.
- c) Write regular expressions for the language $L = \{a^n b^m \mid n \ge 4, m \le 3\}$
- d) Define useless productions.
- e) Define ambiguity in Context free grammar.

(5x2)

Section - A

2. Explain in detail Chomsky hierarchy for formal languages.

(10)

3. a) Convert the following Mealy machine to corresponding Moore machine.

b) Convert the following NFA to DFA

δ/Σ	a	b
→qo	{qo, q1}	{q2}
ql	· {qo}	{q1}
q2	Ø	{q0, q1}

(2x5)

4. a) Find the regular expression for the following transition diagram using ARDEN'S Theorem.

b) Let $\Sigma = \{a, b\}$, show that $L = \{w \in \Sigma^* | n_a(w) < n_b(w)\}$ is not regular. (5)

SECTION-B

5 a) Convert the following CFG into Greibach Normal Form (5)

S->AB

A->BS|a

B->SA|b

b) Design a PDA that accepts the following language

(5)

 $L = \{0^n 1^{2n} | n > 0\}$

- 6) Design a Turing machine which takes w_1bw_2 as input and gives w_1 as output, where $\Sigma = \{1\}$. Also, simulate the moves of Turing machine for the string 11b111. (10)
 - 7) Write notes on the following:
 - a) Linear-bounded Automata
 - b) Undecidability

(5*2=10)

x-x-x