Exam.Code:0940 Sub. Code: 7099

2062 B.E. (Mechanical Engineering) Fourth Semester MEC-406: Numerical Analysis

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section. Use of simple calculator is allowed. All questions carry equal marks.

x-x-x

- 1. (a) What is total numerical error? How do you avoid numerical error?
- (b) Define simple and multiple roots of a nonlinear equation mathematically. Which method do you find useful in multiple root and how?
- (c) Explain the difference between curve fitting and interpolation. What are the methods used in curve fitting and interpolation?
- (d) What are the disadvantages of the Simpson's 3/8th rule compared with the Simpson's 1/3rd? When does the Simpson's 1/3rd rule gives exact rule?
- (e) Write the second order difference approximation for first and second order derivatives based on central differences.

SECTION-A

- 2. (a) Given that $x = 10.00 \pm 0.05$; $y = 0.0356 \pm 0.0002$; $z = 15300 \pm 100$; $t = 62000 \pm 500$. Find the maximum value of the absolute error in (i) x + y + z + t; (ii) z^3 .
 - (b) Find the root of multiplicity 2 near 0.5 for the equation: $x^3 x^2 x + 1 = 0$.
- 3. (a) State the condition of convergence of Gauss-Seidel iterative method. Apply this method, to solve the system:

$$x + 3y + 10z = 24$$
, $2x + 17y + 4z = 25$, $28x + 4y - z = 32$.

- (b) Define norm of a matrix. List the different types of norms of a matrix. What is condition number of a matrix? Explain how the condition number is useful in determining whether the matrix is ill-conditioned. Compute it for $A = \begin{bmatrix} 9 & 8 \\ 1 & 1 \end{bmatrix}$.
- 4. (a) Fit a second degree parabola $y = a + bx + c x^2$ to the data (x_i, y_i) : (1, 0.63), (3, 2.05), (4, 4.08), (6, 10.78).
 - (b) Lagrange's formula can be used to express a rational function as a sum of partial fractions. Express $f(x) = \frac{x^2 + x 3}{x^3 2 x^2 x + 2}$ as a sum of partial fractions.

SECTION-B

- 5. (a) Use trapezoidal rule to evaluate $\int_1^2 \int_1^2 \frac{dx \ dy}{x+y}$ taking four sub-intervals.
 - (b) Given the following values of $f(x) = \ln x$, find the approximate value of $f^{1}(2.0)$ and $f^{11}(2.0)$:

X	2.0	2.2	2.6
f(x)	0.69315	0.78846	0.95551

6. (a) State the difference between single step and multistep methods in solving ODEs. Use Adams-Basforth formula to find y(0.4) for the equation $\frac{dy}{dx} = \frac{1}{2}xy$ using the data:

у у	0	0.1	0.2	0.3
	1	1.0025	1.0101	1.00228

- (b) Solve the BVP: $y^{11} 64y + 10 = 0$, y(0) = 0, y(1) = 0 by finite difference method.
- 7. Using Crank-Nicolson implicit scheme to solve: $16 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x+1, t > 0, given that u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t, compute u for one time step.