P.T.O.

2062

B.E. (Computer Science and Engineering) Fourth Semester

CS-401: Analysis and Design of Algorithms

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

1.	(a) Describe substitution method with the help of an example.	$[5 \times 2 = 10]$
, i	(b) Explain the time complexity of selection sort algorithm.	en tin tin
	(c) What are various elements of greedy strategy?	
	(d) Explain general method of Backtracking.	
	(e) What is Cook's Theorem?	
	SECTION – A	
2.	(a) Solve the following recurrences and justify your answers. Assume that	t T(n) is constant
	for $n \le 2$. 1. $T(n) = 16T(n/4) + n^2$ 2. $T(n) = T(n-1) + n$	[5]
	(b) Use divide and conquer strategy to illustrate the operation of merge sort on array A =	
	(3, 41, 52, 26, 38, 57, 9, 49).	[5]
3.	(a) Explain Strassen's matrix multiplication solution. Also perform its time	and complexity
	analysis,	[5]
	(b) Suppose that the graph G = (V, E) is represented as an adjacency matri	y Give a simple
	implementation of Prim's algorithm for this case that runs in $O(V^2)$ time.	[5]
4.	Write a short note on the following:	$[5 \times 2 = 10]$
	(a) Binary search (b) Single source shortest path	[3 X 2 - 10]
	SECTION – B	
5.	(a) What is LCS problem? Write an algorithm to compute length of an LCS. Use the same	
	to determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).	[4]
	(b) Let $w = [5, 7, 10, 12, 15, 18, 20]$ and $m = 35$. Write an algorithm for	sum of subsets
	problem and use the same to find all possible subsets of w that sum to m. I)raw the nortion
	of the state space tree that is generated.	

(a) What is 0/1 knapsack problem? Explain its solution using dynamic programming.
[4]
(b) Explain N-Queen's problem using an example and solve the same using backtracking. Also perform the time and space complexity analysis of your solution.
[4, 1,1]
7. (a) Explain Graph coloring problem. Using an example solve the same using backtracking. Also perform the time and space complexity analysis of your solution.

[1, 4, 1, 1]

(b) Write a note on NP-Completeness and reducibility.

[3]