Exam.Code:0922 Sub. Code: 6605

2062

B.E. (Information Technology) Fourth Semester

ASM-401: Discrete Structure

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

1)

- a. Give an example of a connected graph that has neither a Hamiltonian cycle nor an Euler circuit. Hence find its chromatic number.
- b. Let $S = \{2,4,5,10,15,20\}$. Consider the partial order ' \leq ' defined by divisibility relation on S. Draw the Hasse diagram for the poset (S, \leq) . Find all maximal elements of this poset. (2)
- c. What is an Eulerian path? What is the necessary and sufficient condition for a connected graph to have an Eulerian path? (2)
- d. From a deck of 52 playing cards, how many must be picked up so that at least one of them is a heart. (2)
- e. Is the following argument valid? Give reason. (2)

$$\begin{array}{c}
p \\
p \lor q \\
q \to r \to s \\
\hline
t \to r
\end{array}$$

Part A

II)

a. Let \mathcal{R} be the relation on the set $A = \{1, 2, 3, 4, 5\}$ such that the matrix of \mathcal{R} is

$$M_{\mathcal{R}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}. \text{ Suppose } \mathcal{R}^+ = (cl_{\text{SYM}}(\mathcal{R})) \cup (cl_{\text{tran}}(\mathcal{R})) \text{ , where '} cl_{\text{sym}}(\mathcal{R})'$$
and 'cl__(\mathref{R})' are symmetric and transition of \mathref{R} is

and ' $cL_{ran}(\mathcal{R})$ ' are symmetric and transitive closures of \mathcal{R} , respectively. Draw the digraph of \mathcal{R}^+ and show that it is an equivalence relation.

(7)

- b. Find the total number of one-one functions from the set $A \times B$ if A contains 3 elements and B contains 5 elements. III)
- a. Prove or disprove that:

(5)

i. $(p \to q) \lor (\neg p \to q)$ and q are logically equivalent.

ii. $(p \to q) \leftrightarrow (\neg p \lor q)$ is a contradiction.

- Express the following using predicates, quantifiers and logical connectives. Also test the validity of the consequences.
 - All athletes are healthy. All healthy people do exercise. Vitamins are taken by all exercisers. Gopal is an athlete. Therefore, Gopal takes vitamins.
 - ii. If Rita works hard and has talent, then she will get a job. If she gets a good job, then she will be happy. Hence if Rita is not happy, then she didn't work hard or she doesn't have talent.

IV)

- a. Define distributive Lattice. Prove that every distributive lattice is a modular lattice. (4)
- b. Prove that the following statements are equivalent: (6)
 - i. n is an odd integer.
 - ii. 7n + 8 is an odd integer
 - iii. n^2 is an odd integer.

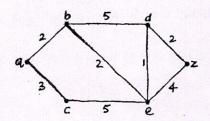
Part B

V)

- a. In an examination a student is asked to answer any 7 out of 10 questions. In how many ways can this be done? Out of these ways how many ways are there in which the student answers 7 questions out of 10 selecting at least 3 from the first 5 questions.
- b. A group of 123 workers went to a canteen for cold drinks, ice-cream and tea, 42 workers took ice-cream, 36 tea and 30 cold drinks. 15 workers purchased ice-cream and tea, 10 ice-cream and cold drinks, and 4 cold drinks and tea but not ice-cream, 11 took ice-cream and tea but not cold drinks. Determine how many workers did not purchase any things. (3)
- c. State and prove Euler's formula for connected planar graph. (4)

VI)

- a. Define order and degree of a recurrence relation. Solve the following recurrence relation $a_r 6a_{r-1} + 9a_{r-2} = r \cdot (3^r)$.
- b. If G is loop-free undirected graph with at least one edge, prove that G is bipartite iff its chromatic number is 2.
- c. Find shortest path from a to z each in the graph given below: (2)



VII) .

a. State and prove LAGRANGE'S theorem for finite groups.

- (5)
- b. Define field. If $D = a + b\sqrt{5}$: $a, b \in \mathbb{Z}$, show that $(D, +, \cdot)$ is an integral domain. (5)