Exam.Code:1033 Sub. Code: 7872

#### 2072

## M.E. (Bio-Technology) Second Semester MEBIO-203: Enzyme Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section. State clearly your assumptions.

1) Write briefly:

 $(2 \times 5 = 10)$ 

(10)

- a) Define enzyme activity and specific enzyme activity?
- b) What are the cofactors? How are they useful?
- c) Write down the formula for the calculation of amylase activity.
- d) According the Michaelis-Menten equation, what is the  $V/V_{\text{max}}$  ratio when [S] = 3 K<sub>m</sub>?
- e) Define Enzyme immobilization? List two advantages and disadvantages of immobilization.

# SECTION - A

- . 2) A carboxypeptidase was found to have  $K_m = 2 \mu M$  and  $k_{cat} = 150 \text{ s}^{-1}$  for substrate A.
  - (a) What is the initial rate of reaction for [A] = 5  $\mu$ M and [E<sub>0</sub>] = 0.01  $\mu$ M?
  - (b) The presence of 5 mM of a competitive inhibitor decreased the initial rate by a factor of 2. What is the value of K<sub>I</sub>?
  - (c) A competing substrate B is added to part (a). It's  $K_m = 10 \mu M$  and  $k_{cat} = 100 s^{-1}$ . Calculate (2, 5, 3)
- 3) a) Define substrate inhibitions? Derive a rate of expression (V) for substrate inhibition kinetics and show that at maximum reaction rate of substrate concentration is

# $S_{max} = \sqrt{K_m \times K_S}$

- b) Describe the type of enzyme inhibitions and compare  $V_{\text{max}}$  and  $K_{\text{m}}$  with controlled enzyme.
- c) One microgram of a pure enzyme (MW=73000) catalyzed a reaction at a rate of  $0.3 \mu moles/min$ . under optimum conditions. Calculate the turnover number. (3, 5, 2)
- 4) a) Defined Biocatalyst and what are differences between Biocatalyst and Chemical catalyst?
  - b) Show diagrammatically the role of enzyme in lowering the activation energy barrier.
  - c) Explain effect of substrate and enzyme concentration on enzyme activity. (4, 3, 3)

### **SECTION - B**

- List ten name of enzyme. Write a critical review on any one of enzyme.
- 6 a) Discuss various idealized enzyme reactor systems. Discuss which you justified to be the best? b) A substrate is converted to a product by the catalytic action of an enzyme. Assume that The Michaelis-Menten kinetics parameters for this reaction are  $K_m = 0.03 \text{ mol} / L$ ,  $V_{max} = 1.3 \text{ mol} / L$ min. What should be the size of steady-state CSTR to convert 90 percent to incoming substrate  $(S_0 = 10 \text{ mol/ L})$  with a flow rate of 10 L/hr?
- 7a) Name the various methods of 'Enzyme Immobilization' in Block diagram. Discuss entrapment
  - Immobilized lactose is used to hydrolyze lactose in dairy waste to glucose and galactose. Enzyme is b) immobilized in resin particles and packed into at 0.05 m<sup>3</sup> Plug - flow column. The total effectiveness factor for the system is close to unity;  $K_m$  for the immobilized enzyme is 1.32 kg m<sup>-3</sup>;  $V_{max}$  is 45 kg m<sup>-3</sup> h<sup>-1</sup>. The lactose concentration in the feed stream is 9.5 kg m<sup>-3</sup>; a substrate conversion is 98% is required. At what flow rate should the reactor be operated?