Exam.Code:0906 Sub. Code: 6660

2072

B.E. (Bio-Technology) Second Semester ASM-201: Differential Equations and Transforms (Common to all streams)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each section. All questions carry equal marks.

- 1. (a) Define the order and degree of a ordinary differential equation. Find the same for differential equation: $x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-1} = y^2$.
 - (b) Find a homogeneous linear ODE for which e^{-x} and e^{-2x} are the solutions.
- (c) Define Laplace and inverse Laplace transform. If $f(t) = e^t$ on $[0, \infty)$, then prove that $L(e^t)$ converges for Re(s) > 1.
- (d) Define Fourier series and Fourier transform. State the conditions for which a function f(x) can be represented as a Fourier series.
- (e) State one dimensional heat equation with boundary conditions and initial conditions for solving it.

SECTION-A

2. (a) Define exact differential equation. Solve the differential equation:

$$y(x y + 2 x^2 y^2) dx + x (xy - x^2y^2) dy = 0.$$

- (b) What is meant by variation of parameters? Solve differential equation by method of variation of parameters: $y^{11} - y = \frac{2}{1+e^x}$.
- 3. (a) Solve in power series about x = 0 of $(1 + x^2)y^{11} + xy^1 y = 0$.
- (b) Find inverse Laplace transform of $f(s) = \frac{s e^{-\frac{s}{2}} + \pi e^{-s}}{s^2 + \pi^2}$ in terms of unit step function.
- 4. (a) Using convolution theorem, solve the IVP:

$$y^{11} + 9 y = sin3t, y(0) = 0, y^{1}(0) = 0.$$

(b) Use the Laplace transform to solve the IVP:

$$y^{11} + 4 y^{1} + 13 y = e^{-t}, y(0) = 0, y^{1}(0) = 2.$$

SECTION-B

- 5. (a) Obtain the Fourier series expansion of $f(x) = x \sin x$ in $(-\pi, \pi)$.
 - (b) Find the Fourier cosine and sine transforms of e^{-ax} , a>0 and hence deduce their inversion formulae.
- 6. (a) Obtain the PDE governing the equation: $\phi(u, v) = 0$, where u = xyz, v = x + y + z.
 - (b) Find the general solution of a PDE: (3 2yz)p + x(2z 1)q = 2x(y 3). Hence, obtain the particular solution which passes through the curve: $z = 0, x^2 + y^2 = 4$.
- 7. (a) Using D' Alembert solution, solve: $y_{tt} = 4 y_{xx}$, 0 < x < 1, t > 0, $y(0,t) = y(\pi,t) = 0$, $y(x,0) = \sin x$ and $y_t(x,0) = \sin x$.
- (b) Using the method of separation of variables, solve:

$$3 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0, \ u(x, 0) = 4 e^{-x}.$$