July 2022 (Set-1)

Exam.Code:0905 Sub. Code: 6631

## 2072

## B.E. (Bio-Technology) First Semester MATHS-101: Calculus (Common with Second Semester) (Common to all streams)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Question I (a) Prove that if a series  $\sum_{n=1}^{\infty} a_n$  converges, then the sequence  $\{a_n\}$  converges to 0.

- (b) Find the area enclosed by the cardioid  $r = a(1 + \cos \theta)$ .
- (c) Find the length of the arc of the parabola  $x^2 = 4y$  measured from the vertex to one extremity of the latus rectum.
- (d) Prove that the curvature at any point of a circle of radius r is constant and equals the reciprocal of its radius.
  - (e) State Gauss Divergence Theorem.

 $(2 \times 5 = 10)$ 

## Part A

Question II Determine the convergence of the following series. Give reasons for your answer:

(i) 
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$$
 (ii)  $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n!}$  (iii)  $\sum_{n=1}^{\infty} a_n$  where  $a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even.} \end{cases}$ 

(iv) 
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 (v)  $\sum_{n=1}^{\infty} \frac{n!}{10^n}$ 

(10)

Question III (a) Find the area of the region enclosed by the parabola  $y = 2 - x^2$  and the line y = -x.

(b) Let f(x,y) be a function of 2 variables x, y having continuous first order partial derivatives. Let  $x = r \cos \theta$ ,  $y = r \sin \theta$ . Using the chain rule

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \text{ and } \frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta},$$

find the values of  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$  in terms of r,  $\theta$ ,  $\frac{\partial f}{\partial r}$ ,  $\frac{\partial f}{\partial \theta}$  and hence convert the equation  $\frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y} = y$  to the polar coordinates  $(r, \theta)$ .

(5+5=10)

Question IV (a) Find the extreme values which the function f(x,y) = xy takes on the ellipse  $\frac{x^2}{8} + \frac{y^2}{2} = 1$ 

(b) Find the local extreme values of the function  $f(x,y) = xy - x^2 - y^2 - 2x - 2y + 4$ . (5+5=10)

P.T.O.

## Part B

Question V (a) Evaluate the double integral  $\int \int_R f(x,y)dA$  where  $f(x,y) = 1 - 6x^2y$  and  $R: 0 \le x \le 2, -1 \le y \le 1$ .

(b) The region in the first quadrant enclosed by the parabola  $y = x^2$ , the y-axis, and the line y = 1 is revolved about the line y = 3/2 to generate a solid. Find the volume of the solid.

(5+5=10)

Question VI (a) Define curvature for a smooth differentiable curve  $\overrightarrow{r}(t)$  in space. Give a mathematical formula for curvature and hence find the curvature of the helix  $\overrightarrow{r}(t) = 2\cos t \ \hat{i} + 2\sin t \ \hat{j} + t \ \hat{k}$ .

(b) Show that the field  $\overrightarrow{F} = y \ \widehat{i} + x \ \widehat{j} + 4 \ \widehat{k}$  is exact and hence evaluate the integral  $\int_{(1,1,1)}^{(2,3,-1)} y \ dx + x \ dy + 4 \ dz \text{ over any curve joining the points } (1,1,1) \text{ and } (2,3,-1) \text{ by finding a potential function for } \overrightarrow{F}.$ 

(5+5=10)

Question VII (a) Without actually calculating the tangent and normal vector  $\overrightarrow{T}$  and  $\overrightarrow{N}$ , write the acceleration  $\overrightarrow{a}$  in the form  $\overrightarrow{a} = a_T \overrightarrow{T} + a_N \overrightarrow{N}$  for the motion  $\overrightarrow{r}(t) = \ln(t^2 + 1) \hat{i} + (t - 2 \tan^{-1} t) \hat{j}$ .

(b) State the circulation-curl form of the Green's theorem and use it to evaluate the line integral  $\oint_C (3y \ dx + 2x \ dy)$  where C is the boundary of the curve  $0 \le x \le \pi$ ,  $0 \le y \le \sin x$  in the positive sense.

(5+5=10)