Exam.Code:0943 Sub. Code: 6742

2122 B.E. (Mechanical Engineering) Seventh Semester

MEC-702: Automatic Controls

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

- 1. Attempt the following
 - (a) Define the static and dynamic systems, give example for each type.
 - (b) Draw block diagram for diaphragm type pneumatic control valve. Also write its transfer function equation.
 - (c) What are the advantage of having signal flow graph using Mason's gain formula?
 - (d) Define:
 i) Stability, ii) Relative stability
 - (e) Calculate error at corner frequency to the term $(1 + j\omega T) \pm N$.

5*2

5

5

5

Part-A

2. (a) Figure 1, shows a gas pressure system. Volume of the vessel = 1.2 m³, Gas temp. = 257°C, Gas resistance $R_1 = 1.8 \times 10^5 \text{ NS/Kgm}^2$, Find the transfer function of the system relating 'p' and 'm', 'p' being the pressure in the vessel and 'm', the inflow mass flow rate. Gas constant $\overline{R} = 297$ J/Kgk.

- (b) What is feedback? What type of feedback is preferred for control system?
- 3. (a) Determine the transfer function C/R from the block diagram as shown in Fig. 2

Fig. 2

- (b) What are the basic elements of mechanical rotational systems? Write its force balance equation.
- 4. (a) The transfer function, $G(s) = [(s^2 + 4)(1 + 2.5s)] / [2(s^2 + 2)(1 + 0.5s)]$, Plot the poles and zeros 5 in s-plane and determine the value of the transfer function at s = 2.
 - (b) Represent the following set of equations by a signal flow graph and determine the overall gain relating x_5 and x_1 .

$$x_2 = ax_1 + fx_2$$
; $x_3 = bx_2 + ex_4$; $x_4 = cx_3 + hx_5$; $x_5 = dx_4 + gx_2$.

Part-B

5,	(a)	Apply Routh criterion to determine the stability of the system having the characteristic equation as $s^3 + 4 \times 10^2 s^2 + 5 \times 10^4 s + 2 \times 10^6 = 0$.	5
	(b)	Explain stability in terms of characteristic equation of a control system.	5
		Write the state-space equations, using partial fraction method for the system with transfer function	5
		Y(s) / U(s) = 8 / [(s+1)(s+2)(s+4)]	
	(b)	What do you mean by virtual instrumentation? Why is Virtual Instrumentation necessary?	5
	(a)	Write the Steps to Create a Sub-VI.	5
	(6)	Explain potentiometer error detector with circuit diagram.	4