Exam.Code:0911 Sub. Code: 6326 P.T.O. ## 2122 ## B.E. (Bio-Technology) Seventh Semester BIO-714: Bio-Analytical Techniques | | BIO-714: Bio-Analytical Techniques | |----------|---| | Time all | owed: 3 Hours Max. Marks: 50 | | NOTE: | Attempt five questions in all, including Question No. I which is compulsor and selecting two questions from each Unit. $x-x-x$ | | I. | Attempt the following:- | | | a. Define pyrolization b. Draw the structure of TMS and mention why it is used as standard in NMR spectroscopy. c. What is spin-latice relaxation? d. The strength of magnetic field is measured in e. Mention one limitation of x-ray crystallography. f. The samples in TEM should be ultra thin, explain why? g. What is electrothermal atomization, where is it used? h. After alpha emission the mass number of an element is changed by and atomic number is changed by i. Give two applications of atomic absorption spectroscopy. j. Which light sources are commonly used in spectroflorometry? | | | (10x1 | | | <u>UNIT - I</u> | | II. | a) Differentiate between single beam and double beam spectrophotometer. Draw a schematic for each of them. | | | b) Elaborate on the working principle of Magnetic resonance imaging. (5,5) | | III. | a) Define chemical shift. A compound Y shows a chemical shift of 7.46 ppm using a 90 MHz NMR. Calculate the chemical shift of Y in Hz. What will the chemical shift of Y using a 300 MHz NMR (both in Hz and ppm)? b) Explain the n+1 rule using an example. Discuss the reason for J coupling/spin-spin splitting. (5,5) | | IV. | a) Write a detailed note on instrumentation of atomic absorption spectroscopy. | | | b) Draw an overview of different class of compounds showing their position on IF spectra. (5,5) | ## UNIT - II - V. a) What are the advantages and disadvantages of using a scintillation counter over a Geiger-Muller counter? - b) Mention about applications of different isotopes that have clinical applications. (5,5) - VI. Draw a labeled diagram of Mass Spectrophotometer and Discuss different types of ionization. (10) - VII. a) Which analytical technique can be used to measure the concentration of elements in given sample? Elaborate on its working principle. - b) Define chromatography and mention it's any five applications. (5,5) x-x-x