Exam.Code:0929 Sub. Code: 6597

2122

B.E. (Electronics and Communication Engineering) Fifth Semester

EC-505: Digital System Design

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

ı.		그 사람들은 사람들이 가지 않는 것을 하면 하는 것으로 가지 않는데 가지 않는데 살아 있다.	
	a)	What are multi output functions? Explain with an example.	(2)
	b)	Explain state assignment with the help of an example.	(2)
	c)	Explain block parity method for error detection and correction.	(2)
	d)	Explain stuck-at-zero and stuck-at-one faults.	(2)
	e)	What is the difference between critical and non-critical races?	(2)
		Part A	

2 (a) Calculate the essential prime implicants for the following using Q-M method:

Y =]	$\sum m (0,2,4,7,8,16,24,32,36,40,48)$	(5)
(b) Mini	mize the following using K-map:	
Y(A	$(B,C,D) = \Pi M (1,2,3,8,9,10,11,14) \cdot d (7,15)$	
Also in	nplement the circuit using NOR gates only.	(5)
3 (a)Imple	ement the following function $Y(A,B,C) = \sum_{i=1}^{n} (0,1,3,5,7)$ using:	
(i)	Type 0 Mux designing	
(ii)	Type 1 Mux designing	
(iii)	Type 2 Mux designing.	(5)
	ain error detection and correction techniques.	(5)
4 (a) Expl	ain path sensitizing method for fault detection in combinational circuits.	(5)
(b) Assu	me data 1001101 as number of message bits or data bits without parity	bits. Check
the erro	r if any and find the correct code using Hamming codes.	(5)

Part B

5 (a) Derive the state table and state diagram for the following	
JA = XB', $KA = 1$, $JB = X'A'$, $KB = 1$ and output $Y = B' + X' + A'$.	1
Also specify the type of clocked sequential circuit.	(5)
(b) Convert SR flip-flop to D flip-flop.	(5)
6 (a) How hazards can be removed? Also explain cycles and hazards in asynchron	ious
circuits.	(5)
(b) What are Moore and Mealy machines? Compare the machines with the hel	p of suitable
circuit diagram.	(5)
7 (a) Write all the methods for fault detection in sequential circuits. Explain	any one with
suitable example.	(5)
(b) Design a circuit that will function according to the given state diagram	

