Exam.Code:0929 Sub. Code: 6594

2122

B.E. (Electronics and Communication Engineering) Fifth Semester

EC-502: Digital Signal Processing

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

Y-Y-Y

1. (a) Determine the Fourier transform of the signal:

$$x[n] = a^{|n|}$$

(b) Determine the lattice coefficients for the FIR filter with the system function

$$H(z) = A_3(z) = 1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}$$

- (c) Briefly describe JPEG coding.
- (d) Perform the polyphase decomposition of IIR filter:

$$H(z) = \left(\frac{1 + 0.7z^{-1}}{1 - 0.9z^{-1}}\right)$$

(e) Discuss the effect of finite wordlength effects in digital filters.

 $(5 \times 2 = 10)$

Section-A

(a) Find whether the following systems are Memoryless, Time- Invariant, Linear,
 Causal, and Stable. Justify your answer.

i.
$$y[n] = \sum_{k=-\infty}^{n} x[k+2]$$

ii.
$$y[n] = x(n^2)$$

(b) Consider the difference equation

(5)

$$y[n] + \frac{1}{15}y[n-1] - \frac{2}{5}y[n-2] = x[n]$$

- i. Determine the general form of the homogeneous solution to this equation.
- Both a causal and an anticausal LTI system are characterized by the given difference equation. Find the impulse response of the two systems.
- iii. Show that the causal LTI system is stable and the anticausal LTI system is unstable.

3. (a) determine the signal with Z-transform

(5)

$$X(z) = \frac{3}{\left(1 - \frac{10}{3}z^{-1} + z^{-2}\right)}$$

- (b) Describe the Divide and Conquer approach for calculation of DFT. Discuss radix-2

 DIT FFT algorithm with the help of butterfly diagram. (5)
- 4. (a) Compute the N-point DFT of the sequence

(5)

$$x[n] = \cos\left(\frac{2\pi}{N}k_0n\right), \qquad 0 \le n \le N-1$$

(b) Determine the response of the system with impulse response $h(n)=(a)^nu(n)$

to the input signal
$$x(n) = u(n) - u(n-10)$$
. (5)

Section-B

5. Design a digital Butterworth filter to satisfy the criterion

(10)

$$0.86 \le H(\omega) \le 1$$
, $0 \le \omega \le 0.28\pi$

$$H(\omega) \le 0.22$$
, $0.5\pi \le \omega \le \pi$

Using impulse invariant transformation.

6. (a) Obtain the cascade and parallel form structure of system

(5)

$$H(z) = \left(\frac{1+z^{-1}}{1-0.8z^{-1}}\right) \left(\frac{1+2z^{-1}+z^{-2}}{1-1.6z^{-1}+0.8z^{-2}}\right)$$

(b) A LPF is to be designed with the following desired response

(5)

$$H_d(\omega) = \begin{cases} e^{-j3\omega} & 0 \le \omega \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le \omega \le \pi \end{cases}$$

Determine the filter coefficients h(n) for M=7 using Blackman Window.

- 7. (a) Describe the frequency domain representation of down-sampling with the help of mathematical analysis. (5)
 - (b) Describe the architecture of TMS320C6X processor and discuss memory
 - management. (5)