Exam. Code: 0909 Sub. Code: 6308

2122

B.E. (Biotechnology) Fifth Semester BIO-511: Enzyme Engineering and Technology

Time allowed: 3 Hours

.

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section. State clearly your assumptions.

x-x-x

1) Write briefly:

 $(1 \times 10 = 10)$

- a) Define competitive enzyme inhibition?
- b) Define extracellular enzyme? Give two examples.
- c) Define enzyme immobilization and in few cases why the enzyme activity reduced after immobilization.
- d) Write down the formula for the calculation of Thiele Modulus (Θ) .
- e) What is the turnover number?
- f) Define effectiveness factor for immobilized enzyme?
- g) What is the Hanes -Woolf plot?
- h) Define enzyme activity and specific enzyme activity?
- i) Write down the formula for the calculation of amylase activity.
- j) What are the functions of protease and lipase enzyme?

SECTION - A

- 2. a) Derive the rate of expression (V) for different type of enzyme inhibitions.
 - b) Lipase is being investigated as an additive to laundry detergent for removal of stains from fabric. The general reaction is ---

The Michaelis constant for pancreatic lipase is 5 mM. At 60 °C, lipase is subjected to deactivation with half life of 8 min. Fat hydrolysis under specific condition which simulates a top-loading washing machine. The initial fat concentration is 45 mM and maximum reaction rate of hydrolysis is 0.07 mmol l⁻¹ s⁻¹. How long does it take for the enzyme to hydrolyse 80% of the fat present?

- c) Find out degree of inhibition caused by competitive enzyme inhibition when $[S] = K_m$ and $[I] = \frac{1}{2} K_1$ (4, 4, 2)
- 3. a) Derive a rate of expression V for given reaction scheme:

$$E + S \leftrightarrow ES \leftrightarrow E + P$$

The equilibrium constant for the given reaction is 5. Suppose we have a mixture of $[S] = 2 \times 10^{-4} \text{ M}$ and $[P] = 3 \times 10^{-4} \text{ M}$.

What initial velocity will the reaction start towards equilibrium? If

 $K_m^S = 3 \times 10^{-5} \text{ M}, \qquad V_{max}^S = 2 \mu \text{ moles.lit}^{-1} \text{min.}^{-1}, V_{max}^P = 4 \mu \text{ moles.lit}^{-1} \text{min.}^{-1}.$

- b) The velocity of enzymatic reaction at 35 °C is twice as great as the velocity at 25 °C. Calculate activation energy (E_a)
- c) Explain effect of substrate and enzyme concentration on enzyme activity. (4, 3, 3)

4) Derive the rate expression (V) for reaction scheme given by King-Altman's method,

$$E + S \longleftrightarrow ES \to E + P$$

 $E + I \longleftrightarrow EI_1$
 $EI_1 + I \longleftrightarrow EI_2$

(10)

SECTION - B

5. a) A substrate is converted to a product by the catalytic action of an enzyme. Assume that The Michaelis-Menten kinetics parameters for this reaction are:

 $K_m = 0.03 \text{ mol /L}$ $V_{max} = 1.3 \text{ mol /L min.}$

- i) What should be the size of steady-state CSTR to convert 95 percent to incoming substrate ($S_0 = 10 \text{ mol/L}$) with a flow rate of 10 L/hr?
- ii) What should be the size of the reactor if you employ a plug flow reactor instead of the CSTR in the part (i)?
- b) The isomerisation of $5 \times 10^{-2} \, \mathrm{mol \cdot dm^{-1}}$ bulk concentration of glucose to fructose is conducted at 313°K in a batch reactor using immobilised glucose isomerase. The reaction exhibits reversible Michaelis-Menten kinetics and is characterised by K_m value of $2 \times 10^{-3} \, \mathrm{mol \cdot dm^{-1}}$. The determined effectiveness factor η of 0.7 reveals an appreciable contribution of mass transport to the measured reaction rate. Calculate the substrate concentration at the solid-liquid interface under these conditions.
- 6. a) Discuss External and Internal mass transfer in the immobilized enzyme.
 - b) Derive the equation for effectiveness of an immobilized enzyme, assume that rate of substrate consumption can be expressed as zero order kinetics.

 (4, 6)
- 7) Define enzyme immobilization. Write advantages and disadvantages of immobilization. Discuss the various methods of immobilization in details. (10)