

Exam.Code:1031 Sub. Code: 7551

2122

M. Tech. (Material Science and Technology)
Third Semester

MT-301: Advanced Material Characterization

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Working of non-contact mode atomic force microscope.
 - b) Explain why H and He cannot be detected by Auger electron spectroscopy.
 - c) What are the differences between electron energy analyzers of AES and XPS?
 - d) Why, in your opinion, people are more likely to use an AFM than an STM for topographic examinations?
 - e) Describe working principal of spectroscopic ellipsometery. (5x2)

UNIT - I

- II. a) Describe the ion channeling effect in materials.
 - b) Discuss the working principal of Rutherford backscattering (RBS) technique.
 - c) Derive Rutherford cross-section for backscattering in a given laboratory system.

(3+4+3)

- III. a) Explain the phenomena of surface relaxation and reconstruction and related mechanism.
 - b) How one can use LEED be used to determine surface structures quantitatively? Consider, e.g. a case to find the precise position of adsorbed atoms within the square surface unit cell. (5+5)
- IV. Write short notes on:
 - a) Secondary ion mass spectroscopy (SIMS)
 - b) Ion-matter interaction and ion channeling in solids
 - c) Reflection High energy electron Diffraction (RHEED)
 - d) Liquid metal ion sources

 $(4x2\frac{1}{2})$

UNIT - II

- V. a) Describe the working principal, instrumentation involved and applications of x-ray photoelectron spectroscopy technique.
 - b) Suggest an appropriate technique to determine the composition of the following types of sample:
 - i) thin film of oxides
 - ii) polycrystailine metals
 - iii) nanometer-thick coatings of metal on a polymer.

(7+3)

- VI. a) Describe the difference between dark field and bright field imaging modes of a transmission electron microscope.
 - b) What are the issues related to focusing electron beams in a TEM?
 - c) What information can be extracted from a selected area diffraction pattern? (4+3+3)
- VII. Write short notes on:
 - a) X-ray absorption spectroscopy
 - b) Imaging insulating samples with a SEM
 - c) Scanning tunneling spectroscopy
 - d) Density of states determination using STM

 $(4x2\frac{1}{2})$