Exam.Code:1016 Sub. Code: 7460

M.E. (Mechanical Engineering) Third Semester MME-302(e): Optimization Techniques

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt five questions in all, selecting atleast two questions from each Part.

PART-A

1.	a) Why do some problem such information is useful.						ow 5	
	b) Explain the following concept in the context of liners programming: i) Convex polygon . ii) Redundant constraints .							
2.	 a) Define the gradient of the function. Explain its importance in the multi variable optimization. b) Using the variable metric method, find the minimum of the function Min f(X) = x1² - x₁x₂+3x₂². Take initial point as [1,2]. 							
33 .	Solve the following program by use of the Kuhn-Tucker conditions: minimize: $Z=x_1^2+5x_1^2+10x_2^3-4x_1x_2+6x_1x_3-12x_2x_3-2x_1+10x_2+5x_3$ subject to: $x_1+2x_2+x_3 \ge 4$ with: all variables non negative.							
4.	Find the optimal cost of the following transportation model:							
		D1	D2	D 3	D4	Supply		
	01	12	18:	13	20	50		
	O2	17	11,	16	15	60		
	03	11.	10	14	13	40		
	Demand	20	25	10	35	1		
			PAR	Contract of the second				
5.	Employing graphical method, minimize the distance of the origin from the concave region bounded by the constraint:							
	$x_1 + x_2 \ge 4$	•						
	$2x_1 + x_2 \ge 5$ $x_1, x_2 \ge 0$							
	집 그는 동네는 동네는 그 모든 내 가게 가를 보고 있다.							

6.	Find the optimum solution of the following constrained multivariable problem: Minimize $Z = x_1^2 + (x_2 + 1)^2 + (x_3 - 1)^2$	10
	Subject to $x_1 + 5x_2 - 3x_3 = 6$.	
7.	Explain application of optimization in design and analysis of springs and gears.	10
₹8.	a) Compute the mutation and crossover in a genetic algorithm with real numbers. Explain in detail.	3
mul	b) One of management's goals in a goal programming problem is expressed algebraically as, $3x1 + 4x2 + 2x3 = 60$, where 60 is the specific numeric goal and the left-hand side gives the level achieved toward meeting this goal.	
	(i) Letting y+ be the amount by which the level achieved exceeds this goal (if any) and y- the amount under the goal (if any), show how this goal would be expressed as an equality constraint when reformulating the problem as a linear programming model.	
	(ii) If each unit over the goal is considered twice as serious as each unit under the goal, what is the relationship between the coefficients of y+ and y-in the objective function being minimized in this linear programming model?	