Exam. Code: 0933 Sub. Code: 6657

2122

B.E. (Electrical and Electronics Engineering) Third Semester

PC-EE-302: Electrical Machine - I

Max. Marks: 50 Time allowed: 3 Hours

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part. Assume data (if any) can be appropriately assumed.

`1.	Explain in brief.	
a)	Write the expression for rotor speed, N_r of three-phase induction machine and hence	(02)
	write various methods of speed control of this machine.	
b)	Draw the torque-speed curves of the single- and three-phase induction machines and	(02)
	compare these curves in terms of their starting torques.	
c)	Draw the approximate equivalent circuit diagram of a single phase transformer and	(02)
	also write various approximations made.	
d)	What is the difference between three-point and four-point starters being used for	(02)
	starting of a DC machine?	
e)	How hysteresis and eddy current losses of a transformer can be reduced?	(02)
	Part A	
2. a)	The exciting current was found to be 3 amperes when measured on the LV side of	(03)
	the 20-kVA, 2000/200-V transformer. Its equivalent impedance (referred to the HV	
	side) is 8.22+ j 10.2 ohms. Select the transformer rating as the base.	(03)
	a. Find the exciting current in pu on the LV as well as HV side.	
	b. Express the equivalent impedance in pu on the LV as well as HV side	
b	Connect the three single-phase transformers in delta/delta configuration and explain	(04)
	its working through appropriate phasor diagram.	
3. a	Determine the equivalent circuit parameters of a single-phase transformer by	(03
	conducting appropriate tests on it. Also, name these tests.	
		(03)
b	Explain ward-leonard method of speed control of DC machine.	(04)
4.a	What is armature reaction in DC machine? How the effect of armature reaction can	(05)
	be minimized by reducing the carbon brush resistance? Prove it mathematically.	
b	A 220-V dc generator supplies 4kW at a terminal voltage of 220 V, the armature	(05)
	resistance being 0.4 ohms. If the machine is now operated as a motor at the same	

terminal voltage with the same armature current, calculate the ratio of generator speed to motor speed. Assume that the flux/pole is made to increase by 10% as the operation is changed over from generator to motor.

PART B

5. a) Develop the equivalent circuit diagram of a single-phase induction motor from (07)double revolving theory point-of-view. b) Explain the working of a centrifugal switch with the help of appropriate diagram. (03)(6. a) Develop the power-slip characteristics of a three-phase induction machine. And, (08)hence develop the expression for maximum power developed in motoring region. b) Develop the condition for maximum torque development of a three-phase induction (02)machine. Write short notes on: 17. (5) Self-excited induction generator b. How rotating torque will be developed in a three-phase induction (5) machine?