2122

B.E. (Bio-Technology) Third Semester MATHS-302: Linear Algebra and Operations Research (Common with IT)

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section. All questions carry equal marks.

- (a) Define linear combination, linearly dependence and independence of vectors. For what value of k the vector u = (1, -2, k) can be expressed as a linear combination of vectors: v = (3, 0, -2) and w = (2, -1, -5) in R³(R).
 - (b) Define similar matrices. Prove that similar matrices have the same eigenvalues.
- (c) Examine the convexity of the set $S = \{(x, y): x^2 + y^2 \le 1\}$. Justify your answer.
- (d) Write the dual of the following linear programming problem:

0,

$$\max z = 5x_1 + 12 x_2 + 4x_3$$

s. t. $x_1 - 3x_2 + x_3 \ge 4$, $2x_1 - x_2 - 3x_3 = 8$, $x_1, x_2, x_3 \ge 0$.

(e) Write the differences and similarities between assignment and transportation problems.

SECTION-A

- 2. (a) Prove that the set $\{x^3 x + 1, x^3 + 2x + 1, x + 1\}$ is linearly independent set of vectors in the vector space of all polynomials over the field of real numbers.
 - (b) Using Gauss-Jordan method, find the inverse of a matrix: $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$.
 - (c) Find the eigenvalues and the corresponding eigenvectors of the matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

3. (a) Examine whether $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & 2 & 0 \end{bmatrix}$ is diagonalizable or not? If yes,

obtain the matrix P such that $P^{-1}AP$ is a diagonalizable.

(b) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then prove that $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. Hence, find A^{30} .

4. (a) Find all basic feasible solutions for the problem: Max. $z=x_1+2$ x_2 such that $x_1+x_2 \le 10$, $2x_1-x_2 \le 40$, $x_1,x_2 \ge 0$.

(b) Solve the LPP using the big M-method: Minimize $z=2x_1+8x_2+x_3$ such that $x_1+x_2\geq 2$, $2x_2+x_3\geq 5$, $x_1,x_2,x_3\geq 0$.

SECTION-B

- 5. (a) Write down the dual of the LPP and solve it: Max. $z = 4 x_1 + 2 x_2$ such that $-x_1 x_2 \le -3$, $-x_1 + x_2 \le -2$ and $x_1, x_2 \ge 0$. Hence or otherwise write down the solution of the primal.
- (b) Solve by dual simplex method: Min. $z=2x_1+x_2$ subject to the constraints $3x_1+x_2\geq 3$, $4x_1+3x_2\geq 6$, $x_1+2x_2\geq 3$, $x_1,x_2\geq 0$.
- 6. (a) Find the optimal solution of the following transportation problem:

	D_1	D_2	D_3	D_4	D ₅	Availability
0,	1	2	6	2	3	800
02	3	4	5	8	1	600
03	3	1	1 .	2	6	200
04	4	7	3	5	4	400
Requirement	400	100	700	300	500	

- (b) Define assignment problem along with its areas of applications. Explain the difference between an assignment problem and a transportation problem.
- 7. A project has the following time schedule:

Activity	Time in weeks	Activity	Time in weeks	
(1-2)	4	5-7	8	
(1-3)	1	6-8	1	
(2-4)	1	7-8	2	
(3-4)	1	8-9	1	
	6	8-10	8	
(3-5) (4-9)	5	9-10	7	
(5-6)	4			

Construct PERT network and compute: (i) T_E and T_E , (ii) Float of each activity, (iii) Critical path and its duration.