Exam.Code:0933 Sub. Code: 6660

2122

B.E. (Electrical and Electronics Engineering) Third Semester BS-EE-305: MATH-III

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

- 1 (a) Define linear span of a vector space. What is the linear span of the set $S = \{e_1, e_2, \left(\frac{e_1 + e_2}{2}\right)\}$, where e_1 and e_2 are unit vectors?
- (b) Show that a linear mapping $f: V \to U$ is one-one if and only if $\ker(f) = 0$.
- (c) Prove that similar matrices have same eigenvalues.
- (d) Define analytic and non-analytic function with suitable examples. Examine analyticity of $f(z) = \ln|z| + i \operatorname{Arg}(z), z \neq 0.$
- (e) Define bi-linear transformation. Find its fixed and critical points.

 $(5 \times 2 = 10)$

SECTION-A

- 2. (a) Find the column rank of the matrix: $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & -1 & 4 \\ -2 & 8 & 2 \end{bmatrix}$.
- (b) Let V be the vector space of all square matrices over R. Determine which of the following are sub-spaces of V?

(i)
$$W = \left\{ \begin{bmatrix} x & y \\ z & 0 \end{bmatrix} : x, y, z \in R \right\}$$
 (ii) $W = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} : x, y \in R \right\}$. Justify.

- (c) Test the consistent of the linear system: x + 2y + z = 3; 2x + y + 3z = 5; 2x + 4y + 2z = 7.
- 3. (a) Prove that the set of all positive real numbers with operations: x + y = xy and $k = x^k$ is a real vector space.
 - (b) Extend the set of vectors (1, 2, 3), (2, 1, 0) to form a basis of \mathbb{R}^3 .

- (c) Prove that linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, y) is a linear transformation and is onto but not 1-1.
- 4. (4) Examine whether $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ is diagonalizable or not? If yes, obtain the matrix P

such that $P^{-1}AP$ is a diagonalizable.

(b) Find the matrix representing the transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x,y,z) = (x+y+z, 2x+z, 2y-z, 6y) relative to the standard basis of \mathbb{R}^3 and \mathbb{R}^4 .

SECTION-B

- 5. (a) Solve: (i) $\sin\left(\frac{i}{z}\right) = i$, (ii) $\sinh z = i$.
 - (b) Prove that $w = \cos z$ is not a bounded function.
 - (c) Find all bilinear transformations whose fixed points are i and -i.
- 6. (a) State Laurent's theorem. Find all possible Taylor's and Laurent series expansions for the function $f(z) = \frac{1}{1-z}$ about z = 0.
- (b) State Cauchy residue theorem. Use it to evaluate $\int_{c}^{c} \frac{4-3z}{z(z-1)(z-2)} dz$, where c is the circle $|z| = \frac{3}{2}$.
- 7. (a) Explain different types of singularities with suitable examples. Find all singularities of the function $w = \frac{\sin z}{\sinh z}$ and classify them.
- (b) Evaluate the integral using contour integration: $I = \int_{0}^{2\pi} \frac{\sin \theta}{3 + \cos \theta} d\theta$.