(ii) Questions : 7 Sub. Code: | 6 | 1 | 9 | 3 |
| :--- | :--- | :--- | :--- |

B.Engg. $1^{\text {st }}$ Year ($1^{\text {st }}$ Semester)

(2122)

BIO-TECHNOLOGY (Calculas)

(Common to All Streams)

Paper : ASM-101

Time Allowed : Three Hours]

[Maximum Marks : 50
Note :-Attempt five questions in all including Question No. 1 which is compulsory and selecting two questions from each Section.

SECTION—A

1. Answer the following :
(a) Let $\left\{\begin{array}{cl}\frac{\sin (x-y)}{|x|+|y|}, & |x|+|y| \neq 0 \\ 0, & (x, y)=(0,0)\end{array}\right.$. Check for the continuity of the function f at the origin?
(b) If $z=x+f(u)$ where $u=x y$, show that $x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=x$.
(c) Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$, about the x-axis.
(d) A projectile is fired from the origin over horizontal ground at an initial speed of $300 \mathrm{~m} / \mathrm{sec}$ and a launch angle of 60°. Where will the projectile be 5 sec later ?
(e) State Gauss divergence theorem. $5 \times 2=10$

SECTION—B

2. (a) For approximately what values of x can you replace $\sin x$ by $x-\frac{x^{3}}{6}$ with an error of magnitude no greater than 5×10^{-4} ?
(b) Determine the number of terms should be used to estimate the sum of the series $\sum(-1)^{n+1} \frac{1}{(n+3 \sqrt{n})^{3}}$ with an error of less than 0.01 .
(c) Check the convergence of the series:
(i) $\sum \frac{1}{\sqrt{n}(\sqrt{n}+1)}$
(ii) $\sum \frac{(\ln \mathrm{n})^{2}}{\mathrm{n}^{3 / 2}}$.
$3+4+3$
3. (a) For what values of x does the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{\sqrt{n}+3}$ converge absolutely and conditionally.
(b) Find the linearization $L(x, y, z)$ of the function $f(x, y, z)=x y+2 y z-3 x z$ at $P_{0}(1,1,0)$. Also find the upper bound for the magnitude of the error E in the approximation $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \approx \mathrm{L}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ over the region $R:|x-1| \leq 0.01,|y-1| \leq 0.01, z \leq 0.01$.
$\operatorname{men}(\mathrm{c})$ If $\mathrm{f}(\mathrm{u}, v, w)$ is differentiable and $u=x-y, v=y-z$ and $w=z-x$, show that $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=0 . \quad 3+4+3$
4. (a) Find the dimensions of the rectangular box of maximum volume that can be inscribe inside the ellipsoid $x^{2}+y^{2}+z^{2}=4$.
(b) The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the points on the ellipse that lie closest to and farther from the origin.
(c) Use Taylor's formula to find a quadratic approximation of $e^{x} \sin y$ at the origin. Estimate the error in the approximation if $|x| \leq 0.1$ and $|y| \leq 0.1$. $4+3+3$

SECTION-C

5. (a) Use Stoke's theorem to evaluate

$$
\int_{C} \widetilde{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}} \text { if } \widetilde{\mathbf{F}}=x y \hat{\mathbf{i}}+x y \hat{\mathbf{j}}+3 x z \hat{\mathbf{k}}
$$

where C is the boundary of the portion of the plane $2 x y+y+z=2$ in the first octant traversed counterclockwise.
(b) Show that the vector field

$$
\int_{C} \widetilde{\mathbf{F}}=(y \sin z) \hat{\mathbf{i}}+(x \sin z) \hat{\mathbf{j}}+(x y \cos z) \hat{\mathbf{k}}
$$

is conservative over its natural domain and find a potential function for it.
$5+5$
6. (a) Find the volume of the solid in the first octant boundet by the co-ordinate planes, the cylinder $x^{2}+y^{2}=4$ and the plane $\mathrm{z}+\mathrm{y}=3$.
(b) Evaluate the integral $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(1+\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}} \mathrm{dxdy}$.
(c) Find the moment of inertia of the ice cream cone cut from the solid sphere $\rho \leq 1$ by the cone $\phi=\frac{\pi}{3}$, whereas the constant density of the solid is 1 . $3+3+4=$
7. (a) Find the length of the curve

$$
\overrightarrow{\mathbf{r}}(\mathrm{t})=(\sqrt{2 \mathrm{t}}) \hat{\mathbf{i}}+(\sqrt{2 \mathrm{t}}) \hat{\mathbf{j}}+\left(1-\mathrm{t}^{2}\right) \hat{\mathbf{k}}
$$

from $(0,0,1)$ to $(\sqrt{2}, \sqrt{2}, 0)$.
(b) Find the curvature (κ), unit tangent vector (T) nrincinal Unit Normal Vector (N) and binormal vector (B) of the helix :

$$
\overrightarrow{\mathbf{r}}(t)=(a \cos t) \hat{\mathbf{i}}+(a \sin t) \hat{\mathbf{i}}+b t \hat{\mathbf{k}}, a, b \geq 0, a^{2}+b^{2} \neq 0
$$

Also find the largest value of torsion (τ) of the helix for given value a.
(c) Let $f(x, y)=x^{2}-x y+y^{2}-y$. Find the directions u and directional derivative $\mathrm{D}_{\mathrm{u}} \mathrm{f}(1,-1)$ for which $D_{u} f(1,-1)=-3$. $2+6+2$

