Exam. Code: 0919 Sub. Code: 7918

2021

B.E. (Computer Science and Engineering) Seventh Semester Elective – III

CS-705B: Neural Networks

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I (Section-A) which is compulsory and selecting two questions from each section B-C.

X-X-X

	Section-A	2.2
Q1.	a) Differentiate between AI and neural network.	10
	b) Compare MLP and RBF.	
	c) How Hebbian learning is used in neural network?	
	d) Compare linear separability and non-separability in neural network.	
	e) List main features of Self Organizing Map that can help to analyze business data in a data warehouse?	
	Section-B	L.,
Q2.	a) Compare following learning mechanism:	4
	i) Competitive ii) Boltzmann	
	b) Solve 3-input NAND gate and 3-input NOR gate realizations using McCulloch Pitts.	6
Q3.	a)What are the difficulties in applying gradient descent?	3
	b) List various heuristics for Back-Propagation algorithm.	3
	c)Write short note on Least Square Filters.	4
Q4.	a) One possible weight update equation for artificial neural network training is:	6
	$\Delta w_{kl} = \eta \sum_{p} (targ_l - out_l) \cdot f'(\sum_{n} in_n w_{nl}) \cdot in_k$	
	Describe in words what the various symbols, parameters and variables in it refer to, and	
	how this equation might have been derived. Sufficient assumptions can be made.	
	b) Write and explain initialization, activation, computation of actual response adaptation	
	of weight vector and continuation operations of perceptron convergence theorem.	4
	Section-C	٠.
Q5.	a) Construct an auto-associative network to store vector [1 1 -1 +1]. Use iterative auto-	6
	associative network to test the vector with three missing elements.	
	b)Define competitive learning network. Explain various components of competitive	2
	learning network.	
Q6.	a)Describe in detail how we can carry out dimensionality reduction using Principle	5
	Component Analysis.	
	b)What is meant by the term Vector Quantization using Self Organizing Map?	!
Q7.	a)Define Radial basis function network. What is the main advantage of Radial Basis	1
	Function (RBF) network over a Multi-Layer Perceptron (MLP) network carrying out the	
	same function?	Į.
	b) Construct a Max net with four neurons and inhibitory weights $E=0.25$ when given	
	the initial activations (input signals). The initial activations are $a_1(0) = 0.1$, $a_2(0) = 0.3$,	
	$a_3(0) = 0.4$, $a_4(0) = 0.7$.	